新疆伊宁市第七中学2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为( )
A. B. C. D.
2.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
3.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
4.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
5.如图所示的几何体的左视图是( )
A. B. C. D.
6. “a是实数,”这一事件是( )
A.不可能事件 B.不确定事件 C.随机事件 D.必然事件
7.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
8.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )
A.甲 B.乙 C.甲乙同样稳定 D.无法确定
9.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )
A.带③去 B.带②去 C.带①去 D.带①②去
10.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )
A. B. C. D.
11.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
12.下面几何的主视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.对于函数,我们定义(m、n为常数).
例如,则.
已知:.若方程有两个相等实数根,则m的值为__________.
14.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.
15.如果分式的值是0,那么x的值是______.
16.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.
17.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.
18.因式分解:3a2-6a+3=________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
20.(6分)化简:.
21.(6分)如图,菱形中,分别是边的中点.求证:.
22.(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
23.(8分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
24.(10分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
25.(10分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
(1)求该一次函数表达式;
(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
26.(12分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
(1)连接CF,求证:四边形AECF是菱形;
(2)若E为BC中点,BC=26,tan∠B=,求EF的长.
27.(12分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
2、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
3、D
【解析】
分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
【详解】
A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
∴两组数据的中位数不相等,平均数相等,B组方差更大.
故选D.
【点睛】
本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
4、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
5、A
【解析】
本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
6、D
【解析】
是实数,||一定大于等于0,是必然事件,故选D.
7、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
8、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S甲2=1.4,S乙2=2.5,
∴S甲2<S乙2,
∴甲、乙两名同学成绩更稳定的是甲;
故选A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
9、A
【解析】
第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.
【详解】
③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.
故选:A.
【点睛】
此题主要考查全等三角形的运用,熟练掌握,即可解题.
10、D
【解析】
过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
【详解】
过O作直线OE⊥AB,交CD于F,
∵AB//CD,
∴OF⊥CD,OE=12,OF=2,
∴△OAB∽△OCD,
∵OE、OF分别是△OAB和△OCD的高,
∴,即,
解得:CD=1.
故选D.
【点睛】
本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.
11、B
【解析】
根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.
【详解】
解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,
掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是≈0.17,故B选项正确,
一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,
抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,
故选B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
12、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:根据题目中所给定义先求,再利用根与系数关系求m值.
详解:由所给定义知,,若
=0,
解得m=.
点睛:一元二次方程的根的判别式是,
△=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.
△>0说明方程有两个不同实数解,
△=0说明方程有两个相等实数解,
△<0说明方程无实数解.
实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.
14、1.
【解析】
连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,
OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,
∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.
15、1.
【解析】
根据分式为1的条件得到方程,解方程得到答案.
【详解】
由题意得,x=1,故答案是:1.
【点睛】
本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
16、1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:10nm用科学记数法可表示为1×10-1m,
故答案为1×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17、40°.
【解析】
∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,
∴∠ACD=∠BCD,∠CDB=∠CDB′,
∵∠ACB=90°,∠A=25°,
∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,
∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,
∴∠ADB′=180°﹣70°﹣70°=40°.
故答案为40°.
18、3(a-1)2
【解析】
先提公因式,再套用完全平方公式.
【详解】
解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
【点睛】
考点:提公因式法与公式法的综合运用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)4.1
【解析】
试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
试题解析:(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=10°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=10°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=10°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中点,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,
即,
∴AE=16.1,
∴DE=AE-AD=4.1.
考点:1.相似三角形的判定与性质;2.正方形的性质.
20、
【解析】
原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.
【详解】
解:原式.
21、证明见解析.
【解析】
根据菱形的性质,先证明△ABE≌△ADF,即可得解.
【详解】
在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
∵点E,F分别是BC,CD边的中点,
∴BE=BC,DF=CD,
∴BE=DF.
∴△ABE≌△ADF,
∴AE=AF.
22、
【解析】
分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
详解:列表如下:
| 红 | 红 | 白 | 黑 |
红 | ﹣﹣﹣ | (红,红) | (白,红) | (黑,红) |
红 | (红,红) | ﹣﹣﹣ | (白,红) | (黑,红) |
白 | (红,白) | (红,白) | ﹣﹣﹣ | (黑,白) |
黑 | (红,黑) | (红,黑) | (白,黑) | ﹣﹣﹣ |
所有等可能的情况有12种,其中两次都摸到红球有2种可能,
则P(两次摸到红球)==.
点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
24、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
25、(1);(2).
【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.
【详解】
解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,
∵直线过点M(4,7),
∴8+b=7,解得b=-1,
∴一次函数的解析式为:y=2x-1;
(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,
又∵点Q在直线的下方,如图,
∴2x-1<3x+2,
解得x>-3.
【点睛】
本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.
26、 (1)证明见解析;(2)EF=1.
【解析】
(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;
(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB==可计算出BH=5,从而得到EF=AB=2BH=1.
【详解】
(1)证明:如图1,
∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,
∴EA=EC,∠1=∠2,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AF,
∴AF=CE,
而AF∥CE,
∴四边形AECF为平行四边形,
∵EA=EC,
∴四边形AECF为菱形;
(2)解:作EH⊥AB于H,如图,
∵E为BC中点,BC=26,
∴BE=EC=13,
∵四边形AECF为菱形,
∴AE=AF=CE=13,
∴AF=BE,
∴四边形ABEF为平行四边形,
∴EF=AB,
∵EA=EB,EH⊥AB,
∴AH=BH,
在Rt△BEH中,tanB==,
设EH=12x,BH=5x,则BE=13x,
∴13x=13,解得x=1,
∴BH=5,
∴AB=2BH=1,
∴EF=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.
27、(1)画图见解析;(2)画图见解析;(3)画图见解析.
【解析】
试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.
试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)
(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)
(3)、△PAB如图所示,P(2,0).
考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.
包头市和平中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份包头市和平中学2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了的相反数是,下列计算正确的是,初三等内容,欢迎下载使用。
2021-2022学年重庆育才中学中考数学模拟预测题含解析: 这是一份2021-2022学年重庆育才中学中考数学模拟预测题含解析,共15页。试卷主要包含了比较4,,的大小,正确的是,已知二次函数y=,计算 的结果为等内容,欢迎下载使用。
2021-2022学年江苏省南菁中学中考数学模拟预测试卷含解析: 这是一份2021-2022学年江苏省南菁中学中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,定义,的值是等内容,欢迎下载使用。