终身会员
搜索
    上传资料 赚现金
    云南省涧彝族自治县2022年中考数学猜题卷含解析
    立即下载
    加入资料篮
    云南省涧彝族自治县2022年中考数学猜题卷含解析01
    云南省涧彝族自治县2022年中考数学猜题卷含解析02
    云南省涧彝族自治县2022年中考数学猜题卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省涧彝族自治县2022年中考数学猜题卷含解析

    展开
    这是一份云南省涧彝族自治县2022年中考数学猜题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列各式计算正确的是(  )
    A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
    2.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是(  )

    A.1 B.2 C.3 D.4
    3.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是(  )

    A.∠ACB=90° B.OE=BE C.BD=BC D.
    4.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

    A. B.4 C. D.
    5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )

    A.众数是90 B.中位数是90 C.平均数是90 D.极差是15
    6.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )

    A. B.2 C. D.3
    7.如图是一个几何体的三视图,则这个几何体是( )

    A. B. C. D.
    8.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    9.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    10.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )

    A.4 B.4 C.6 D.4
    11.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是(  )

    A.红花、绿花种植面积一定相等
    B.紫花、橙花种植面积一定相等
    C.红花、蓝花种植面积一定相等
    D.蓝花、黄花种植面积一定相等
    12.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
    14.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
    15.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
    16.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    17.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.

    18.在中,::1:2:3,于点D,若,则______
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

    (1)求抛物线的解析式;
    (2)当0<t≤8时,求△APC面积的最大值;
    (3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
    20.(6分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
    (1)求此抛物线的解析式.
    (2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.

    21.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.
    (1)求甲5时完成的工作量;
    (2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
    (3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?

    22.(8分)如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,
    判断与的位置关系,并说明理由;若,,,求线段的长.
    23.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
    (1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
    (2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为  ,AD的长为   .

    24.(10分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
    (1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
    (2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
    (3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
    25.(10分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)

    26.(12分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣ <a<的整数解.
    27.(12分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
    【详解】
    A.a4•a3=a7,故A错误;
    B.3a•4a=12a2,故B错误;
    C.(a3)4=a12,故C正确;
    D.a12÷a3=a9,故D错误.
    故选C.
    【点睛】
    本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.
    2、C
    【解析】
    ①根据图象知道:a<1,c>1,∴ac<1,故①正确;
    ②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;
    ③根据图象知道:x=1时,y=a++b+c>1,故③错误;
    ④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.
    其中正确的是①②④.故选C
    3、B
    【解析】
    根据垂径定理及圆周角定理进行解答即可.
    【详解】
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,故A正确;
    ∵点E不一定是OB的中点,
    ∴OE与BE的关系不能确定,故B错误;
    ∵AB⊥CD,AB是⊙O的直径,
    ∴,
    ∴BD=BC,故C正确;
    ∴,故D正确.
    故选B.
    【点睛】
    本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.
    4、B
    【解析】
    求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
    【详解】
    解:∵AD⊥BC,BE⊥AC,
    ∴∠ADB=∠AEB=∠ADC=90°,
    ∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
    ∵∠AFE=∠BFD,
    ∴∠EAF=∠FBD,
    ∵∠ADB=90°,∠ABC=45°,
    ∴∠BAD=45°=∠ABC,
    ∴AD=BD,
    在△ADC和△BDF中 ,
    ∴△ADC≌△BDF,
    ∴DF=CD=4,
    故选:B.
    【点睛】
    此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
    5、C
    【解析】
    由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
    【详解】
    解:∵90出现了5次,出现的次数最多,∴众数是90;
    ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
    ∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
    极差是:95﹣80=1.
    ∴错误的是C.故选C.
    6、A
    【解析】
    设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.
    【详解】
    设AC=a,则BC==a,AB==2a,
    ∴BD=BA=2a,
    ∴CD=(2+)a,
    ∴tan∠DAC=2+.
    故选A.
    【点睛】
    本题主要考查特殊角的三角函数值.
    7、B
    【解析】
    试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
    考点:由三视图判断几何体.
    8、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
    9、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    10、B
    【解析】
    由已知条件可得,可得出,可求出AC的长.
    【详解】
    解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
    故选B.
    【点睛】
    本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
    11、C
    【解析】
    图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
    【详解】
    解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
    故选择C.
    【点睛】
    本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
    12、B
    【解析】
    依题意在同一坐标系内画出图像即可判断.
    【详解】
    根据题意可作两函数图像,由图像知交点在第二象限,故选B.

    【点睛】
    此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2或1
    【解析】
    点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
    【详解】
    解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
    当点在圆内时,则这个圆的半径是(6+2)÷2=1.
    故答案为2或1.
    【点睛】
    此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
    14、18π
    【解析】解:设圆锥的半径为 ,母线长为 .则

    解得

    15、-1
    【解析】
    将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
    【详解】
    解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
    ∴a2-1=2,
    ∴a=±1,
    ∵a-1≠2,
    ∴a≠1,
    ∴a的值为-1.
    故答案为-1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
    16、y=2(x+3)2+1
    【解析】
    由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
    【详解】
    抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
    故答案为:y=2(x+3)2+1
    【点睛】
    本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    17、
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(﹣,).
    故答案为(﹣,).
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    18、2.1
    【解析】
    先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
    【详解】
    解:根据题意,设∠A、∠B、∠C为k、2k、3k,
    则k+2k+3k=180°,
    解得k=30°,
    2k=60°,
    3k=90°,
    ∵AB=10,
    ∴BC=AB=1,
    ∵CD⊥AB,
    ∴∠BCD=∠A=30°,
    ∴BD=BC=2.1.
    故答案为2.1.
    【点睛】
    本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)12;(3)t=或t=或t=1.
    【解析】
    试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
    试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
    ∴x1+x2=8,
    由.
    解得:.
    ∴B(2,0)、C(6,0)
    则4m﹣16m+4m+2=0,
    解得:m=,
    ∴该抛物线解析式为:y=;.
    (2)可求得A(0,3)
    设直线AC的解析式为:y=kx+b,


    ∴直线AC的解析式为:y=﹣x+3,
    要构成△APC,显然t≠6,分两种情况讨论:
    当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),

    ∵P(t,),∴PF=,
    ∴S△APC=S△APF+S△CPF
    =
    =
    =,
    此时最大值为:,
    ②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
    ∵P(t,),∴PM=,
    ∴S△APC=S△APF﹣S△CPF=
    =
    =,
    当t=8时,取最大值,最大值为:12,
    综上可知,当0<t≤8时,△APC面积的最大值为12;
    (3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
    Q(t,3),P(t,),
    ①当2<t≤6时,AQ=t,PQ=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=2(舍),
    ②当t>6时,AQ′=t,PQ′=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=1,
    ∴t=或t=或t=1.

    考点:二次函数综合题.
    20、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
    【解析】
    (1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
    (2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
    【详解】
    解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
    ∴,
    解得,
    ∴抛物线的解析式为y=﹣x2﹣2x+1;
    (2)∵A(﹣1,0),B(0,1),
    ∴OA=OB=1,
    ∴△AOB是等腰直角三角形,
    ∴∠BAO=45°.
    ∵PF⊥x轴,
    ∴∠AEF=90°﹣45°=45°,
    又∵PD⊥AB,
    ∴△PDE是等腰直角三角形,
    ∴PE越大,△PDE的周长越大.
    设直线AB的解析式为y=kx+b,则
    ,解得,
    即直线AB的解析式为y=x+1.
    设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
    则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
    所以当x=﹣时,PE最大,△PDE的周长也最大.
    当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
    即点P坐标为(﹣,)时,△PDE的周长最大.

    【点睛】
    本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
    21、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;
    【解析】
    (1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.
    【详解】
    (1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
    故甲5时完成的工作量是1.
    (2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30
    故y甲=30t(0≤t≤5);
    乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
    当0≤t≤2时,可得y乙=20t;
    当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,
    解得:,
    故y乙=60t﹣80(2<t≤5).
    综上可得:y甲=30t(0≤t≤5);y乙=.
    (3)由题意得:,
    解得:t=,
    故改进后﹣2=小时后乙与甲完成的工作量相等.
    【点睛】
    本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.
    22、(1).理由见解析;(2).
    【解析】
    (1)根据得到∠A=∠PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;
    (2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论.
    【详解】
    (1).理由如下,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵垂直平分,
    ∴,
    ∴,
    ∴,
    ∴,
    即.
    (2)

    连接,设,
    由(1)得,,又,,
    ∵,
    ∴,
    ∴,
    解得,即.
    【点睛】
    本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键.
    23、 (1) 见解析;(2)
    【解析】
    (1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
    (2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
    【详解】
    解:(1)证明:
    连接OE、ED、OD,
    在Rt△ABC中,∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,∴△AEO是等边三角形,
    ∴AE=OE=AO
    ∵OD=OA,
    ∴AE=OD
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,又∵∠C=90°
    ∴AC∥OD,又∵AE=OD
    ∴四边形AODE是平行四边形,
    ∵OD=OA
    ∴四边形AODE是菱形.
    (2)
    在Rt△ABC中,∵AC=6,AB=10,
    ∴sin∠B==,BC=8
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,
    在Rt△OBD中,sin∠B==,
    ∴OB=OD
    ∵AO+OB=AB=10,
    ∴OD+OD=10
    ∴OD=
    ∴OB=OD=
    ∴BD=
    =5
    ∴CD=CB﹣BD=3
    ∴AD=
    =
    =3.
    【点睛】
    本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
    24、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
    【解析】
    试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
    (2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
    (3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
    试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
    答:孔明同学测试成绩位90分,平时成绩为95分;
    (2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
    (3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
    答:他的测试成绩应该至少为1分.
    考点:一元一次不等式的应用;二元一次方程组的应用.
    25、见解析
    【解析】
    先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
    【详解】
    ①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
    ②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
    ③连接AF,则直线AF即为∠ABC的角平分线;
    ⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
    ⑥连接FH交BF于点M,则M点即为所求.

    【点睛】
    本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
    26、,1.
    【解析】
    首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.
    【详解】
    解:(﹣a)÷(1+)=×=,
    ∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,
    ∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,
    当a=1时,
    原式==1.
    27、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.

    相关试卷

    云南省涧南彝族自治县2023-2024学年数学九上期末达标测试试题含答案: 这是一份云南省涧南彝族自治县2023-2024学年数学九上期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数y=﹣的图象在,若反比例函数的图象过点,下列运算中,正确的是等内容,欢迎下载使用。

    2023-2024学年云南省涧彝族自治县数学九上期末达标测试试题含答案: 这是一份2023-2024学年云南省涧彝族自治县数学九上期末达标测试试题含答案,共8页。试卷主要包含了如图等内容,欢迎下载使用。

    云南省涧彝族自治县2022年中考猜题数学试卷含解析: 这是一份云南省涧彝族自治县2022年中考猜题数学试卷含解析,共24页。试卷主要包含了估计-1的值在,的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map