漳州市重点中学2022年中考数学最后冲刺浓缩精华卷含解析
展开
这是一份漳州市重点中学2022年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了对于函数y=,下列说法正确的是,下列计算正确的是,﹣0.2的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
2.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )
A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
3.对于函数y=,下列说法正确的是( )
A.y是x的反比例函数 B.它的图象过原点
C.它的图象不经过第三象限 D.y随x的增大而减小
4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
5.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
型号(厘米)
38
39
40
41
42
43
数量(件)
25
30
36
50
28
8
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 B.中位数 C.众数 D.方差
6.下列计算正确的是
A. B. C. D.
7.﹣0.2的相反数是( )
A.0.2 B.±0.2 C.﹣0.2 D.2
8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.8cm B.4cm C.4cm D.5cm
9.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
A. B. C. D.
10.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
A. B. C.2或3 D.或
二、填空题(共7小题,每小题3分,满分21分)
11.因式分解:a3﹣2a2b+ab2=_____.
12.如图,ΔABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到ΔA′B′C′,且点A在A′B′上,则旋转角为________________°.
13.化简:_____________.
14.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.
15.若am=5,an=6,则am+n=________.
16.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.
17.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.
三、解答题(共7小题,满分69分)
18.(10分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
(1)若顾客选择方式一,则享受优惠的概率为 ;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.
19.(5分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.
(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是 .
(2)当t=时,原函数为y=x2﹣2x
①图象G所对应的函数值y随x的增大而减小时,x的取值范围是 .
②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
20.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.
根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
21.(10分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
22.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.
23.(12分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
24.(14分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
(1)求桥DC与直线AB的距离;
(2)现在从A地到达B地可比原来少走多少路程?
(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:
由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
详解:
∵在中,﹣6<0,
∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
∵当x=﹣3时,y=2,当x=﹣2时,y=3,
∴当﹣3<x<﹣2时,2<y<3,
故选C.
点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
2、D
【解析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
【详解】
当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
则这条直线解析式为y=﹣x+1.
故选D.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
3、C
【解析】
直接利用反比例函数的性质结合图象分布得出答案.
【详解】
对于函数y=,y是x2的反比例函数,故选项A错误;
它的图象不经过原点,故选项B错误;
它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
4、C
【解析】
科学记数法的表示形式为a×10 的形式,其中1≤a|1时,n是正数;当原数的绝对值,
所以;
②函数的对称轴为:x=n,
令y=x2﹣2nx+n2﹣3=0,则x=n±,
当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
当x=n在y轴左侧时,(n≤0),
此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,
则函数在AB段和点C右侧,
故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
解得:n≤;
当x=n在y轴右侧时,(n≥0),
同理可得:n≥;
综上:n≤或n≥.
【点睛】
在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
20、(1)5;(2)36%;(3).
【解析】
试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
(2)根据:小组频数= ,进行求解即可;
(3)利用列举法求概率即可.
试题解析:
(1)E类:50-2-3-22-18=5(人),故答案为:5;
补图如下:
(2)D类:1850×100%=36%,故答案为:36%;
(3)设这5人为
有以下10种情况:
其中,两人都在 的概率是: .
21、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】
试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.
试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
考点:(1)正方形;(2)全等三角形的判定与性质.
22、(1)证明见解析(2)① ②3
【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
【详解】
(1)连接OE
∵OA=OE,∴∠AEO=∠EAO
∵∠FAE=∠EAO,∴∠FAE=∠AEO
∴OE∥AF
∵DE⊥AF,∴OE⊥DE
∴DE是⊙O的切线
(2)①解:连接BE
∵直径AB ∴∠AEB=90°
∵圆O与BC相切
∴∠ABC=90°
∵∠EAB+∠EBA=∠EBA+∠CBE=90°
∴∠EAB=∠CBE
∴∠DAE=∠CBE
∵∠ADE=∠BEC=90°
∴△ADE∽△BEC
∴
②连接OF,交AE于G,
由①,设BC=2x,则AE=3x
∵△BEC∽△ABC ∴
∴
解得:x1=2,(不合题意,舍去)
∴AE=3x=6,BC=2x=4,AC=AE+CE=8
∴AB=,∠BAC=30°
∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.
故OG+EG最小值是3.
【点睛】
本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.
23、(1)详见解析;(1)
【解析】
(1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
(1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
【详解】
(1)证明:连接OE交DF于点H,
∵EF是⊙O的切线,OE是⊙O的半径,
∴OE⊥EF.
∴∠F+∠EHF=90°.
∵FD⊥OC,
∴∠DOH+∠DHO=90°.
∵∠EHF=∠DHO,
∴∠F=∠DOH.
∵∠CBE=∠DOH,
∴
(1)解:∵∠CBE=15°,
∴∠F=∠COE=1∠CBE=30°.
∵⊙O的半径是,点D是OC中点,
∴.
在Rt△ODH中,cos∠DOH=,
∴OH=1.
∴.
在Rt△FEH中,
∴
【点睛】
本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
24、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
【解析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
【详解】
解:(1)作CH⊥AB于点H,如图所示,
∵BC=12km,∠B=30°,
∴km,BH=km,
即桥DC与直线AB的距离是6.0km;
(2)作DM⊥AB于点M,如图所示,
∵桥DC和AB平行,CH=6km,
∴DM=CH=6km,
∵∠DMA=90°,∠B=45°,MH=EF=DC,
∴AD=km,AM=DM=6km,
∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
即现在从A地到达B地可比原来少走的路程是4.1km.
【点睛】
做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
相关试卷
这是一份2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析,共24页。
这是一份2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,一元二次方程=0的两个根是,定义等内容,欢迎下载使用。
这是一份2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若a+|a|=0,则等于,如图所示的几何体的左视图是等内容,欢迎下载使用。