终身会员
搜索
    上传资料 赚现金

    浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析第1页
    浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析第2页
    浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份浙江省丽水地区五校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列计算正确的是,若点等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为( )

    A. B.3cm C. D.9cm
    2.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是(  )

    A. B. C. D.
    3.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为(  )

    A.20° B.35° C.45° D.70°
    4.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是

    A.3 B. C. D.4
    5.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为(  )

    A.20° B.30° C.45° D.50°
    6.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是(  )
    A.a>0 B.a=0 C.c>0 D.c=0
    7.下列计算正确的是(  )
    A.x2x3=x6 B.(m+3)2=m2+9
    C.a10÷a5=a5 D.(xy2)3=xy6
    8.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是(  )
    A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x1
    9.不等式5+2x <1的解集在数轴上表示正确的是( ).
    A. B. C. D.
    10.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.

    12.若,则=_____.
    13.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.
    14.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    15.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= .

    16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.

    17.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.

    三、解答题(共7小题,满分69分)
    18.(10分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.

    19.(5分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)

    20.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
    求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
    21.(10分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    22.(10分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:

    (1)样本中的总人数为  人;扇形统计十图中“骑自行车”所在扇形的圆心角为  度;
    (2)补全条形统计图;
    (3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
    23.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
    求证:(1)△PAC∽△BPD;
    (2)若AC=3,BD=1,求CD的长.

    24.(14分)解方程式:- 3 =



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    解:∵∠CDB=30°,
    ∴∠COB=60°,
    又∵OC=,CD⊥AB于点E,
    ∴,
    解得CE=cm,CD=3cm.
    故选B.
    考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.
    2、D
    【解析】
    分析:根据主视图和俯视图之间的关系可以得出答案.
    详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
    点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
    3、B
    【解析】
    解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.
    4、B
    【解析】
    试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
    连接AC,
    ∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
    ∴Rt△AOC≌Rt△ADC,
    ∴AD=AO=2,
    连接CD,设EF=x,
    ∴DE2=EF•OE,
    ∵CF=1,
    ∴DE=,
    ∴△CDE∽△AOE,
    ∴=,
    即=,
    解得x=,
    S△ABE===.
    故选B.

    考点:1.切线的性质;2.三角形的面积.
    5、D
    【解析】
    根据两直线平行,内错角相等计算即可.
    【详解】
    因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
    【点睛】
    本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
    6、D
    【解析】
    试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
    考点:根的判别式;一元二次方程的定义.
    7、C
    【解析】
    根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
    【详解】
    x2•x3=x5,故选项A不合题意;
    (m+3)2=m2+6m+9,故选项B不合题意;
    a10÷a5=a5,故选项C符合题意;
    (xy2)3=x3y6,故选项D不合题意.
    故选:C.
    【点睛】
    本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
    8、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.
    【详解】
    解:∵反比例函数y=﹣中k=﹣1<0,
    ∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,
    ∵y1<0<y2<y3,
    ∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,
    ∴x2<x3<x1.
    故选:D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.
    9、C
    【解析】
    先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
    【详解】
    5+1x<1,
    移项得1x<-4,
    系数化为1得x<-1.
    故选C.
    【点睛】
    本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
    10、C
    【解析】
    由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
    【详解】
    解:由题意知,△AFB≌△AED
    ∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
    ∴AE⊥AF,故此选项①正确;
    ∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;
    ∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;
    ∵△AEF与△AHF不相似,
    ∴AF2=FH·FE不正确.故此选项③错误,
    ∵HB//EC,
    ∴△FBH∽△FCE,
    ∴FB:FC=HB:EC,故此选项⑤正确.
    故选:C
    【点睛】
    本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.
    【详解】
    解:连接OE,OF、EF,
    ∵DE是切线,
    ∴OE⊥DE,
    ∵∠C=30°,OB=OE=2,
    ∴∠EOC=60°,OC=2OE=4,
    ∴CE=OC×sin60°=
    ∵点E是弧BF的中点,
    ∴∠EAB=∠DAE=30°,
    ∴F,E是半圆弧的三等分点,
    ∴∠EOF=∠EOB=∠AOF=60°,
    ∴OE∥AD,∠DAC=60°,
    ∴∠ADC=90°,
    ∵CE=AE=
    ∴DE=,
    ∴AD=DE×tan60°=
    ∴S△ADE
    ∵△FOE和△AEF同底等高,
    ∴△FOE和△AEF面积相等,
    ∴图中阴影部分的面积为:S△ADE﹣S扇形FOE
    故答案为
    【点睛】
    此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.
    12、
    【解析】

    =.
    13、-1或1
    【解析】
    利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.
    【详解】
    解:当y=1时,x2-2x-2=1,
    解得:x1=-1,x2=3,
    ∵当a≤x≤a+2时,函数有最大值1,
    ∴a=-1或a+2=3,即a=1.
    故答案为-1或1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
    14、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    15、1.
    【解析】
    先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.
    【详解】
    解:根据题意可知,
    轴,
    设图中阴影部分的面积从左向右依次为,
    则,




    解得:k=2.
    故答案为1.
    考点:反比例函数综合题.
    16、3
    【解析】
    分析:
    由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
    详解:
    ∵在△ABC中,点E,F分别是AC,BC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥AB,EF:AB=1:2,
    ∴△CEF∽△CAB,
    ∴S△CEF:S△CAB=1:4,
    设S△CEF=x,
    ∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
    ∴,
    解得:,
    经检验:是所列方程的解.
    故答案为:3.
    点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.
    17、1:1
    【解析】
    分析:根据相似三角形的周长比等于相似比解答.
    详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.
    点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)1
    【解析】
    分析:(1)利用“AAS”证△ADF≌△EAB即可得;
    (2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
    详解:(1)证明:在矩形ABCD中,∵AD∥BC,
    ∴∠AEB=∠DAF,
    又∵DF⊥AE,
    ∴∠DFA=90°,
    ∴∠DFA=∠B,
    又∵AD=EA,
    ∴△ADF≌△EAB,
    ∴DF=AB.
    (2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
    ∴∠FDC=∠DAF=30°,
    ∴AD=2DF,
    ∵DF=AB,
    ∴AD=2AB=1.
    点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.
    19、见解析
    【解析】
    先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
    【详解】
    ①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
    ②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
    ③连接AF,则直线AF即为∠ABC的角平分线;
    ⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
    ⑥连接FH交BF于点M,则M点即为所求.

    【点睛】
    本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
    20、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
    【解析】
    (1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
    【详解】
    (1)如图,过点P作PE⊥MN,垂足为E,
    由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
    ∵PE=30海里,∴AP=60海里,
    ∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
    ∴PE=EB=30海里,
    在Rt△PEB中,BP==30≈42海里,
    故AP=60海里,BP=42(海里);

    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
    根据题意,得,
    解得x=20,
    经检验,x=20是原方程的解,
    甲船的速度为1.2x=1.2×20=24(海里/时).,
    答:甲船的速度是24海里/时,乙船的速度是20海里/时.
    【点睛】
    本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
    21、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    22、 (1) 80、72;(2) 16人;(3) 50人
    【解析】
    (1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.
    (2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.
    (3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.
    【详解】
    解:(1)样本中的总人数为8÷10%=80人,
    ∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,
    ∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°
    (2)骑自行车的人数为80×20%=16人,
    补全图形如下:

    (3)设原来开私家车的人中有x人改骑自行车,
    由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,
    解得:x≥50,
    ∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    【点睛】
    本题主要考查统计图表和一元一次不等式的应用。
    23、(1)见解析;(2).
    【解析】
    (1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
    (2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
    【详解】
    证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
    ∴∠APC+∠BPD=45°,
    又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
    ∴∠PAB=∠PBD,∠BPD=∠PAC,
    ∵∠PCA=∠PDB,
    ∴△PAC∽△BPD;
    (2)∵,PC=PD,AC=3,BD=1
    ∴PC=PD=,
    ∴CD=.
    【点睛】
    本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
    24、x=3
    【解析】
    先去分母,再解方程,然后验根.
    【详解】
    解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
    【点睛】
    此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.

    相关试卷

    浙江省杭州拱墅区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份浙江省杭州拱墅区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,已知方程组,那么x+y的值等内容,欢迎下载使用。

    成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算4+等内容,欢迎下载使用。

    2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析:

    这是一份2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列运算中,计算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map