![南京市、盐城市2022届高三年级第二次模拟考试数学试题第1页](http://img-preview.51jiaoxi.com/3/3/13183825/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南京市、盐城市2022届高三年级第二次模拟考试数学试题第2页](http://img-preview.51jiaoxi.com/3/3/13183825/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南京市、盐城市2022届高三年级第二次模拟考试数学试题第3页](http://img-preview.51jiaoxi.com/3/3/13183825/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![参考答案第1页](http://img-preview.51jiaoxi.com/3/3/13183825/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![参考答案第2页](http://img-preview.51jiaoxi.com/3/3/13183825/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![参考答案第3页](http://img-preview.51jiaoxi.com/3/3/13183825/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省南京市、盐城市2022届高三年级第二次模拟考试数学试题
展开
这是一份江苏省南京市、盐城市2022届高三年级第二次模拟考试数学试题,文件包含南京市盐城市2022届高三年级第二次模拟考试数学试题docx、参考答案docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
南京市、盐城市2022届高三年级第二次模拟考试数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C 2.A 3.B 4.B 5.C 6.D 7.A 8.D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.BCD 10.AD 11.AC 12.ABD三、填空题(本大题共4小题,每小题5分,共20分)13.8 14.144 15.- 16.120四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本题满分10分)解:(1)因为∠BAD=,AC平分∠BAD,所以∠BAC=∠CAD=.在△ABC中,因为∠ABC=,所以∠ACB=,又因为AC=2,由=,得AB=,················································2分所以S△ABC=AB·ACsin∠BAC=.在△ACD中,因为∠ADC=∠CAD=,所以CA=CD=2,所以S△ACD=CA·CDsin∠ACD=,所以S四边形ABCD=S△ABC+S△ACD=.·······································4分(2)因为AC平分∠BAD,所以∠BAC=∠CAD,在△ACD中,由∠ADC=, =,得AC=· . ①在△ABC中,由∠ABC=, =,得AC=·. ②·····································6分由①②得=.又因为CD=2AB,所以2sin∠ACB=sin∠CAD. 设∠BAC=θ,则sinθ=2sin(-θ),··············································8分所以sinθ=2×(cosθ-sinθ),即2sinθ=cosθ.因为θ∈(0,),所以cosθ≠0,所以tanθ=,即tan∠BAC=.·················································10分 18.(本题满分12分) 解:(1)因为2∈[21,22),所以a2=22=4,·········································2分因为20∈[24,25),所以a20=25=32.···········································4分(2)an=2k的项数为2k-2k-1=2k-1.·········································6分又因为20+21+22+…+2k-1=2k-1,所以数列{an}的前2k-1项和为S=21×20+22×21+23×22+…+2k×2k-1=21+23+25+…+22k-1=(4k-1).····························································8分当k=5时,S31=(45-1)=682<2022,S51=S31+26×20=682+1280=1962<2022,····································10分S52=S51+26=1962+64=2026>2022.又因为Sn+1>Sn,所以使得Sn<2022成立的正整数n的最大值为51.·································12分19.(本题满分12分)解:(1)取AB中点E,连接PE,DE.因为△PAB是边长为2的等边三角形,所以AB⊥PE,PE=,AE=1.又因为PD⊥AB,PD∩PE=P,PD,PE平面PDE,所以AB⊥平面PDE.························································2分因为DE面PDE,所以AB⊥DE.在Rt△AED中,AD=2,AE=1,所以DE=. 在△PDE中,PD=,DE=,PE=,所以PE2+DE2=PD2,所以DE⊥PE.···············4分又因为AB∩PE=E,AB,PE平面PAB,所以DE⊥平面PAB.又因为DE平面ABCD,所以平面PAB⊥平面ABCD.··················································6分(2)由(1)知,以{,,}为正交基底,建立如图所示的空间直角坐标系E-xyz,则E(0,0,0),D(0,0,),C(-2,0,),P(0,,0).则=(-2,0,0),=(0,-,).······································8分设平面PCD的法向量为n=(x,y,z),则即取x=0,y=1,z=1.所以n=(0,1,1)是平面PCD的一个法向量.……………10分因为DE⊥平面PAB,所以=(0,0,)为平面PAB的一个法向量.所以cos<n,>==,所以平面PAB和平面PCD所成锐二面角的大小为.·································12分 20.(本题满分12分) 解:(1)①当1≤X≤9时,P(X=i)=(1-p)i-1p,i=1,2,…,9.当X =10时,P(X=10)=(1-p)9.所以P(X=i)=·····························································4分②E(X)=i(1-p)i-1p+10(1-p)9=pi(1-p)i-1+10(1-p)9.令S=i(1-p)i-1,则E(X)=pS+10(1-p)9.则S=1+2(1-p)+3(1-p)2+…+8(1-p)7+9(1-p)8,(1-p)S=(1-p)+2(1-p)2+…+7(1-p)7+8(1-p)8+9(1-p)9,两式相减,得pS=1+(1-p)+(1-p)2+…+(1-p)7+(1-p)8-9(1-p)9·················6分=-9(1-p)9,所以E(X)=+(1-p)9=[1-(1-p)10]. 因为0<p<1,所以0<1-(1-p)10<1,所以E(X)<.······························································9分(2)当p=0.25时,由(1)得E(X)<4, 则a×E(X) <4a<5a,即试验结束后的平均成本小于试验成功的获利,所以该公司可以考虑投资该产品.····································12分 21.(本题满分12分)解:(1)因为双曲线C渐近线方程为y=±x,所以=1.又因为双曲线C经过点(,1),所以-=1.····································2分解得a=b=.··························································4分(2)方法1当AB斜率不存在时,由双曲线对称性知AD经过原点,此时与题意不符.设AB方程为y=kx+m(k≠0),A(x1,y1),B(x2,y2),AB中点E(x3,y3),则D(-x2,y2).由消去x,得 (1-k2)x2-2kmx-m2-2=0,所以x1+x2=,x1x2=-,···················································6分则x3==,y3=kx3+m=,则AB的中垂线方程为y-=-(x-),当x=0时,y=. 因为B,D两点关于y轴对称,则△ABD的外接圆圆心在y轴上,记圆心为点F,则F(0,).····················································8分因为△ABD的外接圆经过原点,则OF=FA,即||=.又因为-=1,所以y12- y1+1=0.同理,由OF=FB,得y22- y2+1=0,所以y1,y2是方程y2-y+1=0的两个根,所以y1y2=1.····························10分则(kx1+m)(kx2+m)=1,即k2x1x2+km(x1+x2)+m2=1,所以k2×(-)+km×+m2=1,化简得k2+1=m2,所以原点O到直线AB距离d==1,所以直线AB与圆x2+y2=1相切.·············································12分方法2设直线AB方程为x=my+n,A(x1,y1),B(x2,y2),则D(-x2,y2).又因为B,D两点关于y轴对称,则△ABD的外接圆的圆心在y轴上,设为P(0,t),则PA=PB,即=.由-=1,-=1,化简得t=y1+y2.············································6分因为△ABD的外接圆经过原点O,所以PA=PO=|t|,即=|y1+y2|,化简得y1y2=1.···························································8分联立直线AB及双曲线方程消去x,得 (m2-1)y2+2mny+n2-2=0,所以y1y2=.····················································10分又因为y1y2=1,所以=1,即m2+1=n2,所以原点O到直线AB距离d==1,所以直线AB与圆x2+y2=1相切.·············································12分 22.(本题满分12分)解:(1)由f(x)=aex+sinx-3x-2,得f'(x)=aex+cosx-3.因为a≤0,所以f'(x)=aex+cosx-3≤cosx-3<0,所以f(x)在(-∞,+∞)单调递减.·········2分又因为f(0)=a-2<0,f(a-2)=aea-2+sin(a-2)-3a+4>a(ea-2-3)≥0,因此f(x)有唯一的零点.························································4分(2)由(1)知,a≤0符合题意.(i)当a=2时,由f(x)=2ex+sinx-3x-2,得f'(x)=2ex+cosx-3.当x<0时,f'(x)≤2ex-2<0,所以f(x)单调递减;···································6分当x>0时,f''(x)=2ex-sinx≥2ex-1>0,所以f'(x)在(0,+∞)上单调递增,从而,当x>0时,f'(x)>f'(0)=0,所以f(x)单调递增, 于是f(x)≥f(0)=0,当且仅当x=0时取等号,故此时f(x)有唯一的零点x=0.·················································8分(ii)当a>2时,f(x)>2ex+sinx-3x-2≥0,此时f(x)无零点;···························9分(iii)当0<a<2时,首先证明:当x≥0时,ex>.设g(x)=ex-,x≥0,则g'(x)=ex-x,g''(x)=ex-1≥0,所以g'(x)在[0,+∞)上单调递增,故g'(x)≥g'(0)=1>0,所以g(x)在[0,+∞)上单调递增,因此g(x)≥g(0)=1>0,即当x≥0时,ex>.········································10分当x>0时,f(x)≥aex-3x-3>x2-3x-3,令x2-3x-3=0,得x=.取x0=>0,则f(x0)>0.又f(0)=a-2<0,f(-1)=ae-1+1-sin1>0,因此,当0<a<2时,f(x)至少有两个零点,不合题意.综上,a=2或a≤0.························································12分
相关试卷
这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份2018届江苏省南京市、盐城市高三年级第二次模拟考试数学试题(PDF版),文件包含答案pdf、江苏省南京市盐城市2018届高三年级第二次模拟考试数学试题PDF版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。