所属成套资源:2023年高考数学(文数)一轮复习创新思维课时练(教师版+原卷版)
2023年高考数学(文数)一轮复习创新思维课时练8.5《椭 圆》(2份,教师版+原卷版)
展开
这是一份2023年高考数学(文数)一轮复习创新思维课时练8.5《椭 圆》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练85《椭圆》教师版doc、2023年高考数学文数一轮复习创新思维课时练85《椭圆》原卷版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
2023年高考数学(文数)一轮复习创新思维课时练8.5《椭 圆》一 、选择题1.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A.1 B. C.2 D.22.如图所示,椭圆+=1(a>0)的左、右焦点分别为F1、F2,过F1的直线交椭圆于M,N两点,交y轴于点H.若F1,H是线段MN的三等分点,则△F2MN的周长为( )A.20 B.10 C.2 D.43.设F1,F2是椭圆+=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2的面积为( )A.4 B.6 C.2 D.44.设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则 的值为( )A. B. C. D.5.设F1,F2分别为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )A. B. C. D.6.已知椭圆+=1(a>b>0)的中心为坐标原点O,一个焦点为F,若以O为圆心,|OF|为半径的圆与椭圆恒有公共点,则椭圆的离心率的取值范围是( )A.[,1) B.(0,] C.[,1) D.(0,]7.若椭圆mx2+ny2=1的离心率为,则=( )A. B. C.或 D.或8.椭圆C:+=1(a>b>0)的左顶点为A,右焦点为F,过点F且垂直于x轴的直线交C于P,Q两点,若cos∠PAQ=,则椭圆C的离心率e为( )A. B. C. D.9.已知椭圆C:+=1(a>b>0)与圆D:x2+y2-2ax+a2=0交于A,B两点,若四边形OADB(O为原点)是菱形,则椭圆C的离心率为( )A. B. C. D.10.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A. B. C. D.11.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是( )A. B. C. D.12.已知A,B分别为椭圆+=1(0<b<3)的左、右顶点,P,Q是椭圆上关于x轴对称的不同两点,设直线AP,BQ的斜率分别为m,n,若点A到直线y=x的距离为1,则该椭圆的离心率为( )A. B. C. D.二 、填空题13.若椭圆+=1(a>b>0)的离心率为,短轴长为4,则椭圆标准方程为________.14.设e是椭圆+=1的离心率,且e=,则实数k的值是________.15.如果方程x2+ky2=2表示焦点在x轴上,且焦距为的椭圆,则椭圆的短轴长为______.16.已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,P是椭圆上一点(异于左、右顶点),过点P作∠F1PF2的角平分线交x轴于点M,若2|PM|2=|PF1|·|PF2|,则该椭圆的离心率为________.
相关试卷
这是一份高考数学(理数)一轮复习教案:8.5《椭 圆》(2份打包,含详解+原卷版),文件包含高考数学理数一轮复习教案85《椭圆》含详解doc、高考数学理数一轮复习教案85《椭圆》原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习创新思维课时练1.1《集合》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练11《集合》原卷版doc、2023年高考数学文数一轮复习创新思维课时练11《集合》教师版doc等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习创新思维课时练8.6《双曲线》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练86《双曲线》教师版doc、2023年高考数学文数一轮复习创新思维课时练86《双曲线》原卷版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。