小升初数学真题试卷,通用版L卷含答案
展开
小升初数学真题试卷通用版含答案
二〇二二 年
一、填空题
1. 计算:53.3÷0.23÷0.91×16.1÷0.82=______.
2. 有三个自然数,它们相加或相乘都得到相同的结果,这三个自然数中最大的是_____.
3. 两个同样大小的正方体形状的积木.每个正方体上相对的两个面上写的数之和都等于9.现将两个正方体并列放置.看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于_____.
4. 2,4,6,8,…,98,100,这50个偶数的各位数字之和是_____.
5. 一个箱子里放着几顶帽子,除两顶以外都是红的,除两顶以外都是蓝的,除两顶以外都是黄的,箱子中一共有_____顶帽子.
6. 359999是质数还是合数?答:_____.
7. 一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车也从甲地开往乙地,这列火车的速度是汽车的3倍,在甲地到乙地距离二分之一的地方追上了汽车.甲乙两地相距_____千米.
8. 连续1999个自然数之和恰是一个完全平方数.则这1999个连续自然数中最大的那个数的最小值是______.
9. 某小学四、五、六年级学生是星期六下午参加劳动,其中一个班学生留下来打扫环境卫生,一部分学生到建筑工地搬砖,其余的学生到校办工厂劳动,到建筑工地搬砖是到校办工厂劳动人数的2倍.各个班级参加劳动人数如下表.留下来打扫卫生的是_____班.
班级 | 四(1) | 四(2) | 四(3) | 四(4) | 五(1) |
| 五(2) | 五(3) | 五(4) | 六(1) | 六(2) | 六(3) |
人数 | 55 | 54 | 57 | 55 | 54 |
| 51 | 54 | 53 | 51 | 52 | 48 |
10. 陈敏要购物三次,为了使每次都不产生10元以下的找赎,5元,2元,1 元的硬币最少总共要带_____个.(硬币只有5元,2元,1元三种.)
二、解答题:
1.计算:.
2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?
3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?
4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.
5.由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这样的五位数共有多少个?
答案部分
一、填空题
1. 5000.
2. 3.
显然,这3个自然数分别为1,2,3.
3. 39.
由于正方体上相对两个面上写的数之和都等于9,所以每个正方体六个面上写的数之和等于3×9=27.两个正方体共十二个面上写的数之总和等于2×27=54.而五个看得见的面上的数之和是1+2+3+4+5=15.因此,看不见的七个面上所写数的和等于54-15=39.
4. 426.
各位数字之和为(2+4+6+8)×10+5×(1+2+…+9)+1=426.
5. 3.
设箱子中共有顶帽子,则红帽子-2顶,蓝帽子-2顶,黄帽子-2顶.依题意,有(-2)+(-2)+(-2)=,解得=3.
6. 合数.
提示: 359999=360000-1=6002-1=(600+1)×(600-1)=601×599.
7. 360.
汽车开出30×4=120(千米)后,火车开始追,需120÷(3×30-30)=2(小时)才能追上,因此甲乙两地相距2×(3×30)×2=360(千米).
8. 2998.
设这连续的1999个自然数的中间数为,则它们的和为1999,故1999为完全平方数,又1999为质数,令=1999(为自然数),则这1999个连续自然数中的最大数为+999=1999+999, =1时,最大数的值最小,为1999+999=2998.
9. 五(4).
根据“到建筑工地搬砖是到校办工厂劳动的人数的2倍” ,可得到这两个地方去的10个班的学生数之和应是3的倍数.11个班的学生总数是584人,而584除以3余2,因此留下来打扫卫生的这个班的学生人数应除以3余2,而各班人数中只有53除以3余2,故留下来打扫卫生的是五(4)班.
10. 11.
购物3次,必须备有3个5元,3个2元,3个1元.为了应付3次都是4元,至少还要2个硬币,例如2元和1元各一个,因此,总数11个是不能少的.准备5元3个,2元5个,1元3个,或者5元3个,2元4个,1元4个就能三次支付1元至9元任何钱数.
二、解答题:
1.答案:2475
解析:原式
=2475
2.答案:20把.
解析:(1)每张桌子多少元?320÷5=64(元)
(2)每把椅子多少元?(64×3+48)÷5=48(元)
(3)乙原有椅子多少把?320÷(64-48)=20(把)
3.答案:4种.
解析:共有人民币:2×30+5×8=100(分)=1(元).按如下方法分组,使每组中的币值和为1元:
(0,100),(1,99),(2,98),(3,97),…(49,51),(50,50),因为0,2,4,6,…,50这26个数能用所给硬币构成,所以对应的100,98,96,94,…50也能用所给硬币构成.下面讨论奇数:1,3,5,7,…,99.因为4,6,8,10,…,50均可由贰分硬币构成,所以将其中两个贰分币换成一个伍分币,得到5,7,9,11,…,51,可用所给硬币构成.
只有1、3不能构成,对应的99、97也不能构成,所以共有4种不能构成的币值.
14.答案:每分750米.
解析:(1)7分时慢车与快车相距多少米?(800-600)×7=1400(米)
(2)骑车人的速度是每分多少米?600-1400÷(14-7)=400(米)
(3)快车出发时与骑车人相距多少米?(800-400)×7=2800(米)
(4)中速车每分行多少米?400+2800÷8=750(米)
15. 答案:150个
解析:这是一道组合计数问题.由于题目中仅要求1,2,3至少各出现一次,没有确定1,2,3出现的具体次数,所以可以采取分类枚举的方法进行统计,也可以从反面想,从由1,2,3组成的五位数中,去掉仅有1个或2个数字组成的五位数即可.
方法一:分两类 ⑴1,2,3中恰有一个数字出现3次,这样的数有个;
⑵1,2,3中有两个数字各出现2次,这样的数有个;
综上所述符合题意的五位数共有个.
方法二:从反面想:由1,2,3组成的五位数共有个,由1,2,3中的某2个数字组成的五位数共有 个,由1,2,3中的某1个数字组成的五位数共有3个,所以符合题意的五位数共有个.
小升初数学真题试卷,通用版Q卷含答案: 这是一份小升初数学真题试卷,通用版Q卷含答案,共6页。
小升初数学真题试卷,通用版J卷含答案: 这是一份小升初数学真题试卷,通用版J卷含答案,共6页。
小升初数学真题试卷,通用版R卷含答案: 这是一份小升初数学真题试卷,通用版R卷含答案,共6页。