2022年江苏九年级上数学一元二次应用题+利润类+面积类综合练习-无答案
展开某剧院举办文艺演出。经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张。要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为____________________. 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克。现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价___元。 商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件。据此规律计算:每件商品降价___元时,商场日盈利可达到2100元。 4.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元。为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件。求:(1)若商场每件降价4元,问商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,且让顾客尽可能多得实惠,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由。 5.某文具店购入一批笔袋进行销售,进价为每个20元,当售价为每个50元时,每星期可以卖出100个,现需降价处理:售价每降价3元,每星期可以多卖出15个,店里每星期笔袋的利润要达到3125元.若设店主把每个笔袋售价降低x元,则可列方程为_______________________ 6.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本。(1)求出y与x的函数关系式。(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 7.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克。经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 8.某商场一种商品的进价为每件30元,售价为每件40元。每天可以销售48件,为尽快减少库存,商场决定降价促销。(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元? 9.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元。调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元。(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件。若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品? 10.某公司投资新建了一商场,共有商铺30间,据推测,当每间的年租金定为10万元时,可全部租出,若每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。(1)当每间商铺的年租金定为12万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益为285万元?(收益=租金−各种费用) 11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值. 12.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为___. 13.如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发____秒时,四边形DFCE的面积为20cm2. 14.已知等腰直角△ABC的直角边AB=BC=10cm,点P,Q分别从A. C两点同时出发,均以1cm/s的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D. 设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式。(2)当点P在线段AB上时,点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P.Q运动时,线段DE的长度是否改变?证明你的结论。