![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第1页](http://img-preview.51jiaoxi.com/3/3/13202959/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第2页](http://img-preview.51jiaoxi.com/3/3/13202959/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第3页](http://img-preview.51jiaoxi.com/3/3/13202959/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第4页](http://img-preview.51jiaoxi.com/3/3/13202959/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第5页](http://img-preview.51jiaoxi.com/3/3/13202959/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第6页](http://img-preview.51jiaoxi.com/3/3/13202959/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第7页](http://img-preview.51jiaoxi.com/3/3/13202959/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件第8页](http://img-preview.51jiaoxi.com/3/3/13202959/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
所属成套资源:全套新人教A版高中数学必修第二册阶段复习+阶段提升PPT课件
新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件
展开
这是一份新人教A版高中数学必修第二册第六章平面向量及其应用阶段复习课课件,共35页。
阶段复习课第一课 平面向量及其应用思维脉图构建【答案速填】①__三角形法则__ ②__平行四边形法则__ ③__共线向量__ ④__向量垂直__ ⑤__向量的投影__ ⑥__线段长度__ ⑦__余弦定理__ ⑧__正弦定理__ 易错案例警示易错一 忽视向量加法与减法的三角形法则【案例1】已知向量|a|=2,|b|=3,且|a+b|=|a-b|,则|2a+b|=( )A.4 B.5 C.6 D.7【解析】选B.方法一:因为向量|a|=2,|b|=3,且|a+b|=|a-b|,如图,由向量加法与减法的几何意义,得a⊥b,|2a|=4,所以得到矩形的对角线长度为|2a+b|=5. 方法二:因为向量|a|=2,|b|=3,且|a+b|=|a-b|,所以|a+b|2=|a-b|2,即a2+b2+2a·b=a2+b2-2a·b,得a·b=0.所以|2a+b|= =5.【错因探究】如果忽视了向量加法的平行四边形法则和向量减法的三角形法则,简单认为|2a+b|=|2a|+|b|=7,本题易得到错误答案D.【避错警示】1.向量加法的平行四边形法则是:在▱ABCD中, (共起点,为邻边,平行四边形的对角线).2.注意向量加法与减法的三角形法则是: (首尾相接,始终连线), (共起点,连终点,指向被减). 易错二 忽视零与零向量的差异【案例2】已知△ABC所在平面内一点P满足=______. 【解析】如图,设D为△ABC的边BC的中点,则 又 所以点P为△ABC的重心,且 所以 =0.答案:0【错因探究】如果忽视了零和零向量的差异,本题易得到错误答案0.【避错警示】零和零向量不同,不能混为一谈:0是实数,没有方向,0是向量,其方向是任意的,规定零向量与任意向量共线.易错三 判断条件与结论互推时出错【案例3】(2019·北京高考)设点A,B,C不共线,则“ 与 的夹角为锐角”是“| + |>| |”的 ( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选C.因为| |=| - |,所以| + |>| |⇔| + |>| - |⇔| + |2>| - |2⇔ · >0⇔ 与 的夹角为锐角或0°,又因为点A,B,C不共线,所以 与 的夹角不为0°,即| + |>| |⇔ 与 的夹角为锐角. 【错因探究】如果不能灵活对条件和结论进行真假判断,就会错选B,这是忽视了逆向思维在解题中的应用.【避错警示】本题以向量的夹角和向量的模的不等式为载体考查了充要条件的判断,1.从条件与结论的关系判断:设p为条件,q为结论(1)p⇒q,且p q,则p是q的充分不必要条件,同时,q是p的必要不充分条件;(2)p⇒q,且p⇐q,则p是q的充要条件,同时,q是p的充要条件;(3)p q,且p q,则p是q的既不充分也不必要条件,同时,q是p的既不充分也不必要条件.2.从集合的包含关系判断:设集合A={x|p(x)},B={x|q(x)},A与B的包含关系有:易错四 忽视向量的夹角【案例4】设平面向量a=(-2,1),b=(λ,-1),若a与b的夹角为钝角,则λ的取值范围是 ( )A.(2,+∞) B.(-∞,- )C.(- ,+∞) D.(- ,2)∪(2,+∞)【解析】选D.方法一:因为a=(-2,1),b=(λ,-1),且a与b的夹角为钝角,则a·b