开学活动
搜索
    上传资料 赚现金

    广东省茂名市2022届高三二模数学试题及解析

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      广东省茂名市2022届高三二模数学试题(原卷版).docx
    • 解析
      广东省茂名市2022届高三二模数学试题(解析版).docx
    广东省茂名市2022届高三二模数学试题(原卷版)第1页
    广东省茂名市2022届高三二模数学试题(原卷版)第2页
    广东省茂名市2022届高三二模数学试题(解析版)第1页
    广东省茂名市2022届高三二模数学试题(解析版)第2页
    广东省茂名市2022届高三二模数学试题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省茂名市2022届高三二模数学试题及解析

    展开

    这是一份广东省茂名市2022届高三二模数学试题及解析,文件包含广东省茂名市2022届高三二模数学试题解析版docx、广东省茂名市2022届高三二模数学试题原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
    绝密★启用前2022年茂名市高三级第二次综合测试数学试卷本试卷共4页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则    A.  B.  C.  D. 2. 已知等差数列的前n项和为,若,则    A. 6 B. 7 C. 8 D. 93. 平面非零向量满足,则的夹角为(    A.  B.  C.  D. 4. 已知,则不等式的解集为(    A.  B.  C.  D. 5. 由国家信息中心一带一路大数据中心等编写的《一带一路贸易合作大数据报告(2017)》到2016年这六年中,中国与一带一路沿线国家出口额和进口额图表如下,下列说法中正确的是(    中国与一带一路沿线国家出口额和进口额(亿美元)
     A. 中国与沿线国家贸易进口额的极差为1072.5亿美元B. 中国与沿线国家贸易出口额的中位数不超过5782亿美元C. 中国与沿线国家贸易顺差额逐年递增(贸易顺差额=贸易出口额-贸易进口额)D. 中国与沿线国家前四年的贸易进口额比贸易出口额更稳定6. 双碳,即碳达峰与碳中和的简称,20209月中国明确提出2030年实现碳达峰2060年实现碳中和.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert1898年提出蓄电池的容量C(单位:A·h),放电时间t(单位:h)与放电电流I(单位:A)之间关系的经验公式,其中Peukert常数.在电池容量不变的条件下,当放电电流时,放电时间,则当放电电流,放电时间为(    A. 28h B. 28.5h C. 29h D. 29.5h7. 已知,则的值为(    A.  B.  C.  D. 8. 已知双曲线C的右焦点为F,左顶点为AMC的一条渐近线上一点,延长FMy轴于点N,直线AM经过ON(其中O为坐标原点)的中点B,且,则双曲线C的离心率为(    A. 2 B.  C.  D. 二、多选题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知复数,若为实数,则下列说法中正确的有(    A.  B. C. 为纯虚数 D. 对应的点位于第三象限10. 已知的展开式共有13项,则下列说法中正确的有(    A. 所有奇数项的二项式系数和为 B. 所有项的系数和为C. 二项式系数最大项为第6项或第7 D. 有理项共511. 已知函数,下列说法正确的有(    A 关于点对称B. 在区间内单调递增C. 若,则D. 的对称轴是12. 棱长为4的正方体中,EF分别为棱的中点,则下列说法中正确的有(    A. 三棱锥的体积为定值B. 当时,平面截正方体所得截面的周长为C. 直线FG与平面所成角的正切值的取值范围是D. 当时,三棱锥的外接球的表面积为三、填空题;本题共4小题,每小题5分,共20分.13. 已知正实数mn满足,则的最小值为__________.14. 正三棱锥S-ABC的底面边长为4,侧棱长为D为棱AC的中点,则异面直线SDAB所成角的余弦值为__________.15. 以抛物线的焦点为圆心的圆交两点,交的准线于两点,已知,则__________.16. 已知函数,若存在实数t使得函数7个不同的零点,则实数a的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.17. ABC中,角ABC的对边分别为abc(1)求C(2)求ABC的面积.18. 冰壶是202224日至220日在中国举行24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN的左侧)有一个发球区,运动员在发球区边沿的投掷线MN将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O中,得3分,冰壶的重心落在圆环A中,得2分,冰壶的重心落在圆环B中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为;甲、乙得2分的概率分别为;甲、乙得1分的概率分别为(1)求甲、乙两人所得分数相同的概率;(2)设甲、乙两人所得的分数之和为X,求X的分布列和期望.19. 如图所示圆柱中,AB是圆O的直径,为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且EF分别为的中点.(1)证明:平面ABCD(2)求平面与平面所成锐二面角的余弦值.20. 已知数列满足(1)证明:数列是等比数列;(2)若,求数列的前项和21. 已知椭圆C的上顶点为A,右焦点为F,原点O到直线AF的距离为AOF的面积为1(1)求椭圆C的方程;(2)过点F的直线lC交于MN两点,过点M轴于点E,过点N轴于点QQMNE交于点P,是否存在直线l使得PMN的面积等于,若存在,求出直线l的方程;若不存在,请说明理由.22. 已知函数在点切线方程为(1)求函数上的单调区间;(2)当时,是否存在实数m使得恒成立,若存在,求实数m的取值集合,若不存在,说明理由(附:).

    相关试卷

    广东省茂名市2021届高三二模数学 答案:

    这是一份广东省茂名市2021届高三二模数学 答案,共11页。

    广东省茂名市2021届高三二模数学试卷:

    这是一份广东省茂名市2021届高三二模数学试卷,共6页。

    2023届广东省高三二模数学试题含解析:

    这是一份2023届广东省高三二模数学试题含解析,共24页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map