终身会员
搜索
    上传资料 赚现金
    2022年中考数学重难热点专题突破01 新定义与材料理解问题
    立即下载
    加入资料篮
    2022年中考数学重难热点专题突破01  新定义与材料理解问题01
    2022年中考数学重难热点专题突破01  新定义与材料理解问题02
    2022年中考数学重难热点专题突破01  新定义与材料理解问题03
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学重难热点专题突破01 新定义与材料理解问题

    展开
    这是一份2022年中考数学重难热点专题突破01 新定义与材料理解问题,共47页。

    重难点01 新定义与材料理解问题
    【命题趋势】
    新定义与材料理解问题是中考数学的热点问题,一般为小题(选择题或填空题)。这种类型的问题通常不会单独考查,往往会结合初中数学中某个知识点进行命题,进而既能考查初中数学中某个知识点的掌握情况,又能考查学生的自学能力和分析问题、解决问题的能力.这种类型的问题往往与代数知识结合的比较多,所以同学们一定要重视,一般这种类型的问题难度不大,平时多注意对这种问题的训练拿下这个问题不是难事。
    新定义与材料理解问题是在问题中定义了初中数学中没有学过的一些新概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型.一般有三种类型问题:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念。这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
    【满分技巧】
    1)读懂题目,搜集信息,理解本质﹕
    要想做好这类新定义型问题,关键在于读懂题目中所给新定义的信息,真正理解新概念的本质.题目中可能会给出很多信息,有些是无关紧要的,有些是重要的,我们一定要抓住关键词,关键信息,彻底弄懂其问题的本质,这是我们解决问题的关键所在.
    2) 新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识﹕
    1.实数的运算→高中的虚数的运算、数列的求和、向量等知识、.
    2.平面直角坐标系,反比例函数,一次函数,二次函数→幂函数或指数函数
    3.一元一次、一元二次方程、分式方程→指数方程、三角方程等特殊方程
    4.其他类型
    3)熟练掌握和运用数学的常用思想方法
    我们在解决新定义型问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决新定义的问题,比如,我们用初中所学的实数的知识结合类比和转化的数学思想方法来解决复数或者虚数的一些问题等等.所以一定要把未学的问题转化成已学的数学问题,利用现有的知识和方法,结合转化、类比等数学思想解决问题.


    【限时检测】
    A卷(建议用时:80分钟)
    1.(2021·广东中考模拟)定义一种新运算:,例如:,若,则( )
    A.-2 B. C.2 D.
    2.(2021·湖南永州市·中考真题)定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:.例如:因为,所以,亦即;.根据上述定义和运算法则,计算的结果为( )
    A.5 B.2 C.1 D.0
    3.(2021·贵州遵义·中考真题)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如a+bi(a,b为实数)的数叫做复数,用z=a+bi表示,任何一个复数z=a+bi在平面直角坐标系中都可以用有序数对Z(a,b)表示,如:z=1+2i表示为Z(1,2),则z=2﹣i可表示为( )
    A.Z(2,0) B.Z(2,﹣1) C.Z(2,1) D.(﹣1,2)
    4.(2021·四川成都·二模)如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是( )

    A.A(4,30°) B.B(1,90°) C.D( 4,240°) D.E(3,60°)
    5.(2021·广西来宾市·中考真题)定义一种运算:,则不等式的解集是( )
    A.或 B. C.或 D.或
    6.(2021·湖南·中考模拟)阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
    A. B. C. D.方程组的解为
    7.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( )
    A.②④ B.①②④ C.①② D.①④
    8.(2021·山西·模拟预测)在平面直角坐标系中,将横纵坐标相等的点称为“好点”,下列函数图像中不存在“好点”的是( )
    A. B. C. D.
    9.(2021·甘肃武威市·中考真题)对于任意的有理数,如果满足,那么我们称这一对数为“相随数对”,记为.若是“相随数对”,则( )
    A. B. C.2 D.3

    10.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
    x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
    理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
    因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
    解决问题:求方程x3﹣5x+2=0的解为_____.
    11.(2021·山东枣庄市·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为______.

    12.(2020•临沂中考真题)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 .

    13.(2021·浙江宁波市·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_________.

    14.(2021·广西贵港市·中考真题)我们规定:若,则.例如,则.已知,且,则的最大值是________.
    15.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.

    16.(2021·湖北·中考模拟)在平面直角坐标系中,点到直线的距离公式为:,则点到直线的距离为_____.
    17.(2020·山东威海市·中考真题)如图①,某广场地面是用..三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(型)地砖记作,第二块(型)地时记作…若位置恰好为型地砖,则正整数,须满足的条是__________.

    18.(2021·湖南·中考模拟)阅读下面的材料:
    按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为,排在第二位的数称为第二项,记为,依此类推,排在第n位的数称为第n项,记为.所以,数列的一般形式可以写成:,,,…,.
    一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中,,公差为.根据以上材料,解答下列问题:
    (1)等差数列5,10,15,…的公差d为______,第5项是______.
    (2)如果一个数列,,,…,…,是等差数列,且公差为d,那么根据定义可得到:,,,…,,….
    所以,,,……,
    由此,请你填空完成等差数列的通项公式:(______)d.
    (3)是不是等差数列,,…的项?如果是,是第几项?





    19.(2021·河北·一模)对于三个数a、b、c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a}=.
    (解决问题)(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5-3x,2x-6}=3,则x的取值范围为__________;(2)如果2·M{2,x+2,x+4}=max{2,x+2,x+4},求x的值.






    20.(2021·湖南张家界市·中考真题)阅读下面的材料:
    如果函数满足:对于自变量取值范围内的任意,,
    (1)若,都有,则称是增函数;
    (2)若,都有,则称是减函数.
    例题:证明函数是增函数.
    证明:任取,且,

    ∵且,
    ∴,
    ∴,即,
    ∴函数是增函数.
    根据以上材料解答下列问题:
    (1)函数,,,_______,_______;
    (2)猜想是函数_________(填“增”或“减”),并证明你的猜想.



    21.(2020·江苏盐城市·中考真题)生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息.

    (1)用树状图或列表格的方法,求图可表示不同信息的总个数:(图中标号表示两个不同位置的小方格,下同)

    (2)图为的网格图.它可表示不同信息的总个数为 ;

    (3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则的最小值为 ;


    22.(2021.湖北随州·中考模拟)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
    例:将化为分数形式
    由于=0.777…,设x=0.777…①
    则10x=7.777…②
    ②﹣①得9x=7,解得x=,于是得=.
    同理可得=,=1+=1+,
    根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
    (基础训练)(1)= ,= ;(2)将化为分数形式,写出推导过程;
    (能力提升)(3)= ,= ;(注:=0.315315…,=2.01818…)
    (探索发现)(4)①试比较与1的大小: 1(填“>”、“<”或“=”)
    ②若已知=,则= .(注:=0.285714285714…)
    23.(2021·江苏·中考模拟)(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
    (理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

    (2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;

    (运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.

    ①当,时,如图, ;当, 时,;

    ②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.



    24.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:
    鞋号(正整数)
    22
    23
    24
    25
    26
    27
    ……
    脚长(毫米)






    ……
    为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据定义为如表2:
    序号n
    1
    2
    3
    4
    5
    6
    ……
    鞋号
    22
    23
    24
    25
    26
    27
    ……
    脚长






    ……
    脚长
    160
    165
    170
    175
    180
    185
    ……
    定义:对于任意正整数m、n,其中.若,则.
    如:表示,即.
    (1)通过观察表2,猜想出与序号n之间的关系式,与序号n之间的关系式;
    (2)用含的代数式表示;计算鞋号为42的鞋适合的脚长范围;
    (3)若脚长为271毫米,那么应购鞋的鞋号为多大?










    B卷(建议用时:90分钟)
    1.(2021·柳州市·中考模拟)定义:形如的数称为复数(其中和为实数,为虚数单位,规定),称为复数的实部,称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如,因此,的实部是﹣8,虚部是6.已知复数的虚部是12,则实部是( )
    A.﹣6 B.6 C.5 D.﹣5
    2.(2021·安徽淮南·一模)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:.已知:T(0,1)=3,,若m满足不等式组,则整数m的值为( )
    A.-2和-1 B.-1和0 C.0和1 D.1和2
    3.(2020·湖北随州市·中考真题)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
    A. B. C. D.
    4.(2021·内蒙古通辽市·中考真题)定义:一次函数的特征数为,若一次函数的图象向上平移3个单位长度后与反比例函数的图象交于A,B两点,且点A,B关于原点对称,则一次函数的特征数是( )
    A. B. C. D.
    5.(2021·山东济南·中考真题)新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,点的限变点是.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是( )
    A. B. C. D.
    6.(2021·四川雅安市·中考真题)定义:,若函数,则该函数的最大值为( )
    A.0 B.2 C.3 D.4

    7.(2021·四川巴中·中考真题)y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a=__________.
    8.(2021·山东菏泽市·中考真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
    9.(2021·湖北十堰·模拟预测)规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为_____.
    10.(2021·湖北中考模拟)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.

    11.(2021·湖南·中考模拟)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15

    依上述规律,解决下列问题:(1)若s=1,则a2=___;(2)若s=2,则a0+a1+a2+…+a15=___.
    12.(2021·湖南茶陵·模拟)2010年8月19日第26届国际 数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖,根据蔡勒公式可以得出中华人民共和国成立100周年纪念日(2049年10月1日)是星期_______________.
    (注:蔡勒(德国数学家)公式: 其中:W——所求的日期的星期数(如大于7,就需减去7的整数倍),c——所求年份的前两位,y——所求年份的后两位,m——月份数(若是1月或2月,应视为上一年的13月或14月,即),d——日期数,——表示取数a的整数部分,如:[15.6]=15).
    13.(2021·内蒙古呼和浩特市·中考真题)若把第n个位置上的数记为,则称,,,…,有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:﹐,…其中是这个数列中第n个位置上的数,,2,…k且并规定,.如果数列A只有四个数,且,,,依次为3,1,2,1,则其“伴生数列”B是__________.

    14.(2020·四川内江市·中考真题)我们知道,任意一个正整数x都可以进行这样的分解:(m,n是正整数,且),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称是x的最佳分解.并规定:.
    例如:18可以分解成,或,因为,所以是18的最佳分解,所以.(1)填空:;;
    (2)一个两位正整数t(,,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求的最大值;
    (3)填空:①;②;
    ③;④.

    15.(2021·湖北鄂州市·中考真题)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.
    猜想发现:由;;;;;
    猜想:如果,,那么存在(当且仅当时等号成立).
    猜想证明:∵∴①当且仅当,即时,,∴;
    ②当,即时,,∴.
    综合上述可得:若,,则成立(当日仅当时等号成立).
    猜想运用:(1)对于函数,当取何值时,函数的值最小?最小值是多少?
    变式探究:(2)对于函数,当取何值时,函数的值最小?最小值是多少?
    拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为(米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少?


    16.(2021·凉山州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler.1707-1783年)才发现指数与对数之间的联系.
    对数的定义:一般地.若(且),那么x叫做以a为底N的对数,
    记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:
    ,理由如下:
    设,则.
    .由对数的定义得
    又.
    根据上述材料,结合你所学的知识,解答下列问题:
    (1)填空:①___________;②_______,③________;
    (2)求证:;
    (3)拓展运用:计算.




    17.(2021·重庆中考真题)如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“合和数”,并把数分解成的过程,称为“合分解”.
    例如,和的十位数字相同,个位数字之和为,是“合和数”.
    又如,和的十位数相同,但个位数字之和不等于,不是“合和数”.
    (1)判断,是否是“合和数”?并说明理由;
    (2)把一个四位“合和数”进行“合分解”,即.的各个数位数字之和与的各个数位数字之和的和记为;的各个数位数字之和与的各个数位数字之和的差的绝对值记为.令,当能被整除时,求出所有满足条件的.


    18.(2021·重庆中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;
    (1)判断5313,6437是否为“共生数”?并说明理由;
    (2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n.


    19.(2021·江苏·苏州市金阊实验中学校一模)阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转得到另一条数轴轴和轴构成一个平面斜坐标系.规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对为点在平面斜坐标系中的斜坐标.如图2,在平面斜坐标系中,点的斜坐标是,点的斜坐标是,连接.

    (1)线段的长=______;(2)在平面斜坐标系第一象限(类比于平面直角坐标系,正半轴与正半轴所夹区域)内,有一点,使为等腰直角三角形,求点的斜坐标.


    20.(2021·江苏常州市·中考真题)在平面直角坐标系中,对于A、两点,若在y轴上存在点T,使得,且,则称A、两点互相关联,把其中一个点叫做另一个点的关联点.已知点、,点在一次函数的图像上.
    (1)①如图,在点、、中,点M的关联点是_______(填“B”、“C”或“D”);
    ②若在线段上存在点的关联点,则点的坐标是_______;
    (2)若在线段上存在点Q的关联点,求实数m的取值范围;
    (3)分别以点、Q为圆心,1为半径作、.若对上的任意一点G,在上总存在点,使得G、两点互相关联,请直接写出点Q的坐标.












    21.(2021·内蒙古赤峰市·中考真题)阅读理解:
    在平面直角坐标系中,点M的坐标为,点N的坐标为,且x1≠x1,y2≠y2,若M、N为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M、N的“相关矩形”.如图1中的矩形为点M、N的“相关矩形”.(1)已知点A的坐标为.①若点B的坐标为,则点A、B的“相关矩形”的周长为__________;②若点C在直线x=4上,且点A、C的“相关矩形”为正方形,求直线AC的解析式;(2)已知点P的坐标为,点Q的坐标为, 若使函数的图象与点P、Q的“相关矩形 ”有两个公共点,直接写出k的取值范围.












    22.(2021·山东枣庄市·中考真题)小明根据学习函数的经验,参照研究函数的过程与方法,对函数的图象与性质进行探究.
    因为,即,所以可以对比函数来探究.
    列表:(1)下表列出与的几组对应值,请写出,的值: , ;








    1
    2
    3
    4





    1
    2
    4










    2
    3



    0



    描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:

    (2)请把轴左边各点和右边各点,分别用条光滑曲线顺次连接起来:
    (3)观察图象并分析表格,回答下列问题:①当时,随的增大而 ;(填“增大”或“减小”)
    ②函数的图象是由的图象向 平移 个单位而得到.
    ③函数图象关于点 中心对称.(填点的坐标)





    23.(2021·湖南衡阳市·中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.(1)求函数图象上的“雁点”坐标;
    (2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.①求c的取值范围;②求的度数;(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.












    24.(2021·湖北中考模拟)若一个两位数十位、个位上的数字分别为,我们可将这个两位数记为,易知;同理,一个三位数、四位数等均可以用此记法,如.
    (基础训练)(1)解方程填空:①若,则______;
    ②若,则______;③若,则______;
    (能力提升)(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则一定能被______整除,一定能被______整除,+++6一定能被______整除;(请从大于5的整数中选择合适的数填空)
    (探索发现)(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为______;
    ②设任选的三位数为(不妨设),试说明其均可产生该黑洞数.

    重难点01 新定义与材料理解问题
    【命题趋势】
    新定义与材料理解问题是中考数学的热点问题,一般为小题(选择题或填空题)。这种类型的问题通常不会单独考查,往往会结合初中数学中某个知识点进行命题,进而既能考查初中数学中某个知识点的掌握情况,又能考查学生的自学能力和分析问题、解决问题的能力.这种类型的问题往往与代数知识结合的比较多,所以同学们一定要重视,一般这种类型的问题难度不大,平时多注意对这种问题的训练拿下这个问题不是难事。
    新定义与材料理解问题是在问题中定义了初中数学中没有学过的一些新概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型.一般有三种类型问题:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念。这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
    【满分技巧】
    1)读懂题目,搜集信息,理解本质﹕
    要想做好这类新定义型问题,关键在于读懂题目中所给新定义的信息,真正理解新概念的本质.题目中可能会给出很多信息,有些是无关紧要的,有些是重要的,我们一定要抓住关键词,关键信息,彻底弄懂其问题的本质,这是我们解决问题的关键所在.
    3) 新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识﹕
    1.实数的运算→高中的虚数的运算、数列的求和、向量等知识、.
    2.平面直角坐标系,反比例函数,一次函数,二次函数→幂函数或指数函数
    3.一元一次、一元二次方程、分式方程→指数方程、三角方程等特殊方程
    4.其他类型
    3)熟练掌握和运用数学的常用思想方法
    我们在解决新定义型问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决新定义的问题,比如,我们用初中所学的实数的知识结合类比和转化的数学思想方法来解决复数或者虚数的一些问题等等.所以一定要把未学的问题转化成已学的数学问题,利用现有的知识和方法,结合转化、类比等数学思想解决问题.


    【限时检测】
    A卷(建议用时:80分钟)
    1.(2021·广东中考模拟)定义一种新运算:,例如:,若,则( )
    A.-2 B. C.2 D.
    【答案】B
    【分析】根据新定义运算得到一个分式方程,求解即可.
    【详解】根据题意得,,则,
    经检验,是方程的解,故选B.
    【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.
    2.(2021·湖南永州市·中考真题)定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:.例如:因为,所以,亦即;.根据上述定义和运算法则,计算的结果为( )
    A.5 B.2 C.1 D.0
    【答案】C
    【分析】根据新运算的定义和法则进行计算即可得.
    【详解】解:原式,故选:C.
    【点睛】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.
    3.(2021·贵州遵义·中考真题)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如a+bi(a,b为实数)的数叫做复数,用z=a+bi表示,任何一个复数z=a+bi在平面直角坐标系中都可以用有序数对Z(a,b)表示,如:z=1+2i表示为Z(1,2),则z=2﹣i可表示为( )
    A.Z(2,0) B.Z(2,﹣1) C.Z(2,1) D.(﹣1,2)
    【答案】B
    【分析】根据题中的新定义解答即可.
    【详解】解:由题意,得z=2−i可表示为Z(2,−1).故选:B.
    【点睛】本题考查了点的坐标,弄清题中的新定义是解本题的关键.
    4.(2021·四川成都·二模)如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是( )

    A.A(4,30°) B.B(1,90°) C.D( 4,240°) D.E(3,60°)
    【答案】C
    【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标(5,30°),(2,90°),(4,240°),(3,300°),即可判断.
    【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,
    由题意可知、、、的坐标可表示为:(5,30°),故A不正确;
    (2,90°),故B不正确;(4,240°),故C正确;(3,300°),故D不正确.故选择:C.
    【点睛】本题考查新定义坐标问题,仔细分析题中的C、F两例,掌握定义的含义,抓住表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数是解题关键.
    5.(2021·广西来宾市·中考真题)定义一种运算:,则不等式的解集是( )
    A.或 B. C.或 D.或
    【答案】C
    【分析】根据新定义运算规则,分别从和两种情况列出关于x的不等式,求解后即可得出结论.
    【详解】解:由题意得,当时,
    即时,,则,解得,
    ∴此时原不等式的解集为;
    当时,即时,,则,解得,
    ∴此时原不等式的解集为;
    综上所述,不等式的解集是或.故选:C.
    【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x的不等式.
    6.(2021·湖南·中考模拟)阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
    A. B. C. D.方程组的解为
    【答案】C
    【分析】根据阅读材料中提供的方法逐项进行计算即可得.
    【解析】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;
    B、Dx==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;
    C、Dy==2×12﹣1×3=21,故C选项不正确,符合题意;
    D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.
    【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.
    7.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( )
    A.②④ B.①②④ C.①② D.①④
    【答案】C
    【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.
    【详解】∵或或 ∴7不是广义勾股数,即①正确;
    ∵ ∴13是广义勾股数,即②正确;
    ∵,,不是广义勾股数∴③错误;
    ∵,,,且65不是广义勾股数∴④错误;故选:C.
    【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.
    8.(2021·山西·模拟预测)在平面直角坐标系中,将横纵坐标相等的点称为“好点”,下列函数图像中不存在“好点”的是( )
    A. B. C. D.
    【答案】B
    【分析】根据“好点”的概念:当x=y时,对应的方程有解进行判断即可.
    【详解】解:A、当x=y=0时,满足y=2x,(0,0)为“好点”,该选项不符合题意;
    B、不存在横纵坐标相等的“好点”,该选项符合题意;
    C、当x=y=1或x=y=﹣1时,满足,(1,1)和(﹣1,﹣1)是“好点”,该选项不符合题意;
    D、当x=y=0或x=y=2时,满足,(0,0)和(2,2)为“好点”,不符合题意,故选:B.
    【点睛】本题考查一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答的关键是熟悉每个函数的图象与性质.
    9.(2021·甘肃武威市·中考真题)对于任意的有理数,如果满足,那么我们称这一对数为“相随数对”,记为.若是“相随数对”,则( )
    A. B. C.2 D.3
    【答案】A
    【分析】先根据新定义,可得9m+4n=0,将整式去括号合并同类项化简得,然后整体代入计算即可.
    【详解】解:∵是“相随数对”,∴,整理得9m+4n=0,
    .故选择A.
    【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.

    10.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
    x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
    理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
    因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
    解决问题:求方程x3﹣5x+2=0的解为_____.
    【答案】x=2或x=﹣1+或x=﹣1﹣.
    【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.
    【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,
    ∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,
    ∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,
    故答案为:x=2或x=﹣1+或x=﹣1﹣.
    【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.
    11.(2021·山东枣庄市·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为______.

    【答案】1
    【分析】如图(见解析),先根据“每一横行、两条斜对角线上的数字之和都是15”求出图中①和②表示的数,再根据“每一竖行上的数字之和都是15”建立方程,解方程即可得.
    【详解】解:如图,由题意,图中①表示的数是,
    图中②表示的数是,则,解得,故答案为:1.

    【点睛】本题考查了一元一次方程的应用,正确求出图中①和②所表示的数是解题关键.
    12.(2020•临沂中考真题)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 .

    【分析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,根据勾股定理即可得到结论.
    【解析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA,∵OB=1,∴AB1,
    即点A(2,1)到以原点为圆心,以1为半径的圆的距离为1,故答案为:1.

    13.(2021·浙江宁波市·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_________.

    【答案】或
    【分析】根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:①当点B在边DE上时;②当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可.
    【详解】解:根据题意,∵点称为点的“倒数点”,
    ∴,,∴点B不可能在坐标轴上;
    ∵点A在函数的图像上,设点A为,则点B为,
    ∵点C为,∴,①当点B在边DE上时;点A与点B都在边DE上,
    ∴点A与点B的纵坐标相同,即,解得:,
    经检验,是原分式方程的解;∴点B为,∴的面积为:;
    ②当点B在边CD上时;点B与点C的横坐标相同,∴,解得:,
    经检验,是原分式方程的解;∴点B为,
    ∴的面积为:;故答案为:或.
    【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.
    14.(2021·广西贵港市·中考真题)我们规定:若,则.例如,则.已知,且,则的最大值是________.
    【答案】8
    【分析】根据平面向量的新定义运算法则,列出关于的二次函数,根据二次函数最值的求法解答即可.
    【详解】解:根据题意知:.
    因为,所以当时,.即的最大值是8.故答案是:8.
    【点睛】本题主要考查了平面向量,解题时,利用了配方法求得二次函数的最值.
    15.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.

    【答案】143549
    【分析】根据题中密码规律确定所求即可.
    【详解】532=5×3×10000+5×2×100+5×(2+3)=151025
    924=9×2×10000+9×4×100+9×(2+4)=183654,
    863=8×6×10000+8×3×100+8×(3+6)=482472,
    ∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549
    【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
    16.(2021·湖北·中考模拟)在平面直角坐标系中,点到直线的距离公式为:,则点到直线的距离为_____.
    【答案】
    【分析】根据题目中的距离公式即可求解.
    【详解】解:∵,∴,
    ∴点到直线的距离为:,故答案为.
    【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
    17.(2020·山东威海市·中考真题)如图①,某广场地面是用..三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(型)地砖记作,第二块(型)地时记作…若位置恰好为型地砖,则正整数,须满足的条是__________.

    【答案】m、n同为奇数或m、n同为偶数
    【分析】几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.
    【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数,故答案为:m、n同为奇数或m、n同为偶数.
    【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.
    18.(2021·湖南·中考模拟)阅读下面的材料:
    按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为,排在第二位的数称为第二项,记为,依此类推,排在第n位的数称为第n项,记为.所以,数列的一般形式可以写成:,,,…,.
    一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中,,公差为.根据以上材料,解答下列问题:
    (1)等差数列5,10,15,…的公差d为______,第5项是______.
    (2)如果一个数列,,,…,…,是等差数列,且公差为d,那么根据定义可得到:,,,…,,….
    所以,,,……,
    由此,请你填空完成等差数列的通项公式:(______)d.
    (3)是不是等差数列,,…的项?如果是,是第几项?
    【答案】(1)5;25;(2);(3)-4041是等差数列,,…的项,它是此数列的第2019项.
    【分析】(1)根据公差的定义进行求解可得答案,继而根据等差数列的定义即可求得第5项;
    (2),,与和的关系即可求得答案;(3)根据题意先求出通项公式,继而可求得答案.
    【详解】(1)根据题意得,;
    ,,,故答案为5;25.
    (2), ,,……
    ,故答案为;
    (3)根据题意得,等差数列,,…的项的通项公式为:,
    则,解之得:,
    是等差数列,,…的项,它是此数列的第2019项.
    【点睛】本题考查的是阅读理解题,涉及了规律型——数字的变化类、一元一次方程的应用等知识,弄清题意,根据题中的概念以及方法进行求解是关键.
    19.(2021·河北·一模)对于三个数a、b、c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a}=.
    (解决问题)(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5-3x,2x-6}=3,则x的取值范围为__________;(2)如果2·M{2,x+2,x+4}=max{2,x+2,x+4},求x的值.
    【答案】(1),;(2)-3或0
    【分析】(1)确定特殊角的三角函数值,后排序确定中位线即可;根据定义构造不等式组,解不等式组即可;(2)根据不等式的性质,得x+2<x+4,故需要分最大数是2和x+4两种情形解答.
    【详解】解:(1)∵sin45°=,cos60°=,tan60°=,且<<,
    ∴M{sin45°,cos60°,tan60°}=;∵max{3,5-3x,2x-6}=3,
    ∴,解①得x≥;解②得,∴x的取值范围为:,故答案为:,
    (2)∵2·M{2,x+2,x+4}=max{2,x+2,x+4},根据不等式的性质,得x+2<x+4,需要分最大数是2和x+4两种情形解答,
    ①当x+4≤2时,即x≤-2,原等式变为:2(x+4)=2,x=-3,
    ②x+2≤2≤x+4时,即-2≤x≤0,原等式变为:2×2=x+4,x=0,
    综上所述,x的值为-3或0.
    【点睛】本题考查了新定义问题,中位数,不等式的性质,不等式组,一元一次方程,正确理解新定义,活用分类思想,准确转化为对应的数学模型是解题的关键.
    20.(2021·湖南张家界市·中考真题)阅读下面的材料:
    如果函数满足:对于自变量取值范围内的任意,,
    (1)若,都有,则称是增函数;
    (2)若,都有,则称是减函数.
    例题:证明函数是增函数.
    证明:任取,且,

    ∵且,
    ∴,
    ∴,即,
    ∴函数是增函数.
    根据以上材料解答下列问题:
    (1)函数,,,_______,_______;
    (2)猜想是函数_________(填“增”或“减”),并证明你的猜想.
    【答案】(1),;(2)减,证明见解析
    【分析】(1)根据题目中函数解析式可以解答本题;(2)根据题目中例子的证明方法可以证明(1) 中的猜想成立.
    【详解】解:(1),
    (2)猜想:是减函数;
    证明:任取,,,则
    ∵且,∴,
    ∴,即 ∴函数是减函数.
    【点睛】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.
    21.(2020·江苏盐城市·中考真题)生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息.

    (1)用树状图或列表格的方法,求图可表示不同信息的总个数:(图中标号表示两个不同位置的小方格,下同)

    (2)图为的网格图.它可表示不同信息的总个数为 ;

    (3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则的最小值为 ;
    【答案】(1)见解析;(2)16;(3)3
    【分析】(1)根据题意画出树状图即可求解;(2)根据题意画出树状图即可求解;
    (3)根据(1)(2)得到规律即可求出n的值.
    【详解】解:画树状图如图所示:

    图的网格可以表示不同信息的总数个数有个.
    (2)画树状图如图所示:图④2×2的网格图可以表示不同信息的总数个数有16=24个,故答案为:16.

    (3)依题意可得3×3网格图表示不同信息的总数个数有29=512>,故则的最小值为3,故答案为:3.
    【点睛】此题主要考查画树状图与找规律,解题的关键是根据题意画出树状图.
    22.(2021.湖北随州·中考模拟)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
    例:将化为分数形式
    由于=0.777…,设x=0.777…①
    则10x=7.777…②
    ②﹣①得9x=7,解得x=,于是得=.
    同理可得=,=1+=1+,
    根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
    (基础训练)(1)= ,= ;(2)将化为分数形式,写出推导过程;
    (能力提升)(3)= ,= ;(注:=0.315315…,=2.01818…)
    (探索发现)(4)①试比较与1的大小: 1(填“>”、“<”或“=”)
    ②若已知=,则= .(注:=0.285714285714…)
    【答案】(1),;(2);(3),;(4)①=;②.
    【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节,据此逐一进行解答即可得.
    【解析】(1)由题意知、,故答案为、;
    (2)=0.232323……,设x=0.232323……①,则100x=23.2323……②,
    ②﹣①,得:99x=23,解得:x=,∴;
    (3)同理:,,故答案为,;
    (4)①=1,故答案为=;
    ②,故答案为.
    【点睛】本题考查了规律探索和简单一元一次方程的应用,按照阅读材料的示例找到规律是解题的关键.
    23.(2021·江苏·中考模拟)(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
    (理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

    (2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;

    (运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.

    ①当,时,如图, ;当, 时,;

    ②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
    【答案】(1)见解析,故结论为:直角长分别为、斜边为的直角三角形中;(2);(3)①6,3;②,见解析.
    【分析】(1)此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和列出方程并整理.(2)由图可知行列的棋子排成一个正方形棋子个数为,每层棋子分别为,,,,…,.故可得用两种不同的方法计算棋子的个数,即可解答.
    (3)根据探画出图形究不难发现,三角形内部每增加一个点,分割部分增加部分,即可得出结论.
    【详解】(1)有三个其面积分别为,和.
    直角梯形的面积为.
    由图形可知:
    整理得,,.
    故结论为:直角长分别为、斜边为的直角三角形中.
    (2)行列的棋子排成一个正方形棋子个数为,每层棋子分别为,,,,…,.
    由图形可知:.
    故答案为.
    (3)①如图,当,时,,

    如图,当,时,.

    ②方法1.对于一般的情形,在边形内画个点,第一个点将多边形分成了个三角形,以后三角形
    内部每增加一个点,分割部分增加部分,故可得.
    方法2.以的二个顶点和它内部的个点,共()个点为顶点,可把分割成个互不重叠的小三角形.以四边形的个顶点和它内部的个点,共()个点为顶点,可把四边形分割成个互不重叠的小三角形.故以边形的个顶点和它内部的个点,共()个点作为顶点,可把原n边形分割成个互不重叠的小三角形.故可得.
    故答案为①,;②.
    【点睛】本题考查了图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
    24.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:
    鞋号(正整数)
    22
    23
    24
    25
    26
    27
    ……
    脚长(毫米)






    ……
    为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据定义为如表2:
    序号n
    1
    2
    3
    4
    5
    6
    ……
    鞋号
    22
    23
    24
    25
    26
    27
    ……
    脚长






    ……
    脚长
    160
    165
    170
    175
    180
    185
    ……
    定义:对于任意正整数m、n,其中.若,则.
    如:表示,即.
    (1)通过观察表2,猜想出与序号n之间的关系式,与序号n之间的关系式;
    (2)用含的代数式表示;计算鞋号为42的鞋适合的脚长范围;
    (3)若脚长为271毫米,那么应购鞋的鞋号为多大?
    【答案】(1),;(2)鞋号为42的鞋适合的脚长范围是;(3)应购买44号的鞋.
    【分析】(1)观察表格里的数据,可直接得出结论;(2)把n用含有an的式子表示出来,代入化简整理,再计算鞋号为42对应的n的值,代入求解即可;
    (3)首先计算,再代入求出的值即可.
    【详解】(1)
    (2)由与解得:
    把代入得所以
    则得:,即
    答:鞋号为42的鞋适合的脚长范围是.
    (3)根据可知能被5整除,而所以
    将代入中得故应购买44号的鞋.
    【点睛】此题主要考查了方程与不等式的应用,读懂题意是解题的关键.



    B卷(建议用时:90分钟)
    1.(2021·柳州市·中考模拟)定义:形如的数称为复数(其中和为实数,为虚数单位,规定),称为复数的实部,称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如,因此,的实部是﹣8,虚部是6.已知复数的虚部是12,则实部是( )
    A.﹣6 B.6 C.5 D.﹣5
    【答案】C
    【分析】先利用完全平方公式得出(3-mi)2=9-6mi+m2i2,再根据新定义得出复数(3-mi)2的实部是9-m2,虚部是-6m,由(3-mi)2的虚部是12得出m=-2,代入9-m2计算即可.
    【详解】解:∵
    ∴复数的实部是,虚部是,∴,∴,
    ∴.故选C.
    【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.
    2.(2021·安徽淮南·一模)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:.已知:T(0,1)=3,,若m满足不等式组,则整数m的值为( )
    A.-2和-1 B.-1和0 C.0和1 D.1和2
    【答案】C
    【分析】①已知两对值代入T中计算求出a与b的值; ②根据题中新定义解已知不等式组,再求不等式组的整数解;
    【详解】依题意得,即:b=3 ,即a=1
    所以整理得
    解得 所以整数解是0,1故选:C
    【点睛】此题考查分式的性质,求一元一次不等式组的整数解,弄清题中的新定义法则是解本题的关键.
    3.(2020·湖北随州市·中考真题)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
    A. B. C. D.
    【答案】C
    【分析】先求得,代入即可得出答案.
    【详解】∵,∴,,
    ∴=====,
    ∵,且,∴,∴原式=,故选:C.
    【点睛】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次.
    4.(2021·内蒙古通辽市·中考真题)定义:一次函数的特征数为,若一次函数的图象向上平移3个单位长度后与反比例函数的图象交于A,B两点,且点A,B关于原点对称,则一次函数的特征数是( )
    A. B. C. D.
    【答案】D
    【分析】先求出平移后的直线解析式为,根据与反比例函数的图象交于A,B两点,且点A,B关于原点对称,得到直线经过原点,从而求出m,根据特征数的定义即可求解.
    【详解】解:由题意得一次函数的图象向上平移3个单位长度后解析式为,
    ∵直线与反比例函数的图象交于A,B两点,且点A,B关于原点对称,
    ∴点A,B,O在同一直线上,∴直线经过原点,∴m+3=0,∴m=-3,
    ∴一次函数的解析式为,∴一次函数的特征数是.选:D
    【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A,B关于原点对称得到平移后直线经过原点是解题关键.
    5.(2021·山东济南·中考真题)新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,点的限变点是.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是( )
    A. B. C. D.
    【答案】D
    【分析】根据题意,当时,的图象向下平移4个单位,当

    相关试卷

    重难点01 新定义与材料理解问题-2023年中考数学【热点·重点·难点】专练(全国通用): 这是一份重难点01 新定义与材料理解问题-2023年中考数学【热点·重点·难点】专练(全国通用),文件包含重难点01新定义与材料理解问题解析版docx、重难点01新定义与材料理解问题原卷版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    备战2023数学新中考二轮复习重难突破(浙江专用)专题01 实数: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题01 实数,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题01实数解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题01实数原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    备战2023数学新中考二轮复习重难突破(江苏专用)专题01 实数: 这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题01 实数,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题01实数解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题01实数原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022年中考数学重难热点专题突破01 新定义与材料理解问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map