2022年山东省济南市莱芜区中考三模数学试题(word版含答案)
展开绝密★启用前
2022年莱芜区初中学业水平考试
数学模拟试题(三)
本试题共8页,分选择题部分和非选择题部分,选择题部分满分为36分,非选择题部分满分为84分.全卷满分为120分.考试时间为120分钟.
答题前,请考生务必将自己的学校、班级、姓名、座位号写在答题卡的规定位置.
答题时,选择题部分每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号非选择题部分,用0.5毫米黑色签字笔在答题卡上题号所提示的答题区域作答直接在试题上作答无效.
本考试不允许使用计算器考试结束后,将本试题和答题卡一并交回.
选择题部分 共36分
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.的绝对值是( )
A. B. C. D.
2.如图所示的几何体,其左视图是( )
A. B. C. D.
3.2022年2月4日,北京冬奥会在国家体育场“鸟巢”盛大开幕.开幕式现场用42208个50厘米见方的LED模块搭建了目前世界上最大的LED三维立体舞台,让世界见证了中国智能显示科技的跃迁.其中“42208”用科学记数法可以表示为( )
A. B. C. D.
4.如图,,,的角平分线交于点,则的度数为( )
A.35° B.50° C.55° D.70°
5.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
6.下列运算正确的是( )
A. B.
C. D.
7.如图,的顶点都在正方形网格格点上,如果将绕点顺时针旋转90°,则点的对应点的坐标是( )
A. B. C. D.
8.为加强疫情防控,某社区成立了、、三个志愿者小组,如果小明和小刚每人随机选择参加其中一个小组,则他们恰好选到同一个小组的概率是( )
A. B. C. D.
9.若代数式在实数范围内有意义,则一次函数的图象可能是( )
A. B. C. D.
10.如图,,是反比例函数图象上的两点,过点作轴,交于点,垂足为.若为的中点,则的面积为( )
A. B. C. D.
11.如图,点、分别是矩形的边和对角线上的动点,连接、,,,则的最小值为( )
A. B. C. D.5
12.若平面直角坐标系内的点满足横、纵坐标都为整数,则把点叫做“整点”例如:、都是“整点”,抛物线与轴交于、两点,若该抛物线在、之间的部分与线段所围成的区域(包括边界)恰有七个整点,则的取值范围是( )
A. B.
C. D.
绝密★启用前
2022年莱芜区初中学业水平考试
数学模拟试题(三)
非选择题部分 共84分
二、填空题(本大题共6个小题,每小题3分,共18分.请直接填写答案)
13.因式分解:______.
14.不透明的盒子中装有红色棋子和白色棋子共20个,每个棋子除颜色外都相同,任意摸出一个棋子,摸到红色棋子的概率是25%,则红色棋子的个数是______.
15.一个正多边形的内角和为1080°,那么它每个外角的度数是______.
16.关于的一元二次方程的一个根是2,则的值是______.
17.秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离得出秤钩上所挂物体的重量.称重时,秤钩所挂物重为(斤)是秤杆上秤砣到秤纽的水平距离(厘米)的一次函数.下表中为若干次称重时所记录的一些数据:
(厘米) | 1 | 3 | 4 | 6 | 11 | 12 |
(斤) | 0.75 | 1.25 | 1.50 | 2.25 | 3.25 | 3.50 |
其中有一个值记录错误,请排除后,利用正确数据确定当厘米时,对应的为______斤.
18.如图,四边形是一张矩形纸片,,点是的中点,先将矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,然后把纸片展平,再将矩形纸片沿折叠,点恰好落在上的点处,折痕为,然后再把纸片展平,分别连接、,则的长为______.
三、解答题(本大题共7小题,共66分,解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分8分)
(1)计算:.
(2)解不等式组:,并写出它的所有整数解.
20.(本小题满分8分)
为了调查学生对防溺水知识的了解情况,某校进行了相关知识测试,随机抽取20名学生的测试成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
该校学生样本成绩频数分布表
成绩(分) | 频数(人) | 频率 |
1 | ||
| ||
| 0.15 | |
8 |
| |
| 0.30 | |
合计 | 20 | 1.00 |
该校成绩在的这一组的具体数据是:89;86;86;87;86;89;89;89.
根据以上图表提供的信息,解答下列问题:
(1)表中______;______.
(2)补全该校学生样本成绩频数分布直方图;
(3)抽取的20名学生的测试成绩的中位数是______;
(4)若该校共有1400人,成绩不低于80分为“优秀”,则该校成绩“优秀”的人数约为多少人?
21.(本小题满分8分)
如图,是的外接圆,是的直径,过点作的切线,交的延长线于点,点是劣弧上的一点,连接,.
(1)求证:;
(2)若,,求的半径.
22.(本小题满分8分)
某数学兴趣小组想要测量操场上篮球筐距地面的高度.如图所示,已知篮球筐的直径约为0.5m,某同学站在处,先仰望篮球筐直径的一端处,测得仰角为42°,再调整视线,测得篮球筐直径的另一端处的仰角为359.若该同学的目高为1.7m.
(1)该同学到篮球筐的水平距离是多少米?
(2)篮球筐距地面的高度大约是多少米?(结果精确到0.1m).(参考数据:,)
23.(本小题满分10分)
为了深入贯彻落实国家“双减”政策,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,以增强学生的体质.已知每个篮球的售价比每个足球的售价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.
(1)求篮球和足球的单价分别是多少元?
(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?
24.(本小题满分12分)
在中,,,是边上一点,,直线交于点.
(1)如图1,若,则______,______;
(2)如图2,在(1)的条件下,点在直线上运动,且满足,,连接,请判断与的数量关系和位置关系,并说明理由:
(3)如图3,若,点在直线上运动,且满足,,连接,请求出的最小值.
图1 图2 图3
25.(本小题满分12分)
如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,二次函数的图象经过和点.
(1)求二次函数的表达式:
(2)如图1,平移线段,点的对应点落在二次函数在第一象限的图象上,点的对应点落在直线上,直接写出四边形的形状,并求出此时点的坐标;
(3)如图2,在(2)的条件下,连接,交轴于点,点为直线下方抛物线上一个动点,过点作轴,交于点,连接,是否存在点,使得以点,,为顶点的三角形与相似?若存在,求出线段的长度;若不存在,请说明理由.
图1 图2 备用图
2022年莱芜区初中学业水平考试
数学模拟试题(三)参考答案及评分意见
一、 选择题(每小题3分,共36分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | A | B | B | C | D | C | A | C | D | A | B | D |
二、填空题(每小题3分,共18分)
13. 14.5 15.45° 16.-1 17.6.5 18.
三、解答题(本大题共7小题,共66分)
声明19.(1)解:原式=·······························································3分
=-1 ··························································································4分
(2)解:
解不等式①得 ·················································································1分
解不等式②得 ··················································································2分
故不等式组的解集为:···································································3分
所有整数解为4,5,6,7············································································4分
20.解:(1)0.05,2; ·················································································2分
(2)补全的频数分布直方图; ········································································4分
(3)88;······································································································6分
(4)(人),
即该校成绩“优秀”的人数约为980人.································································8分
21.证明:(1)∵AD与⊙O相切于点A,
∴∠DAC+∠BAC=90° ···········································································1分
∵AB是⊙O的直径
∴∠ACB=90°
∴∠ABC+∠BAC=90° ········································································2分
∴ ∠DAC= ∠ABC······················································································3分
∵∠ABC= ∠AEC
∴∠DAC= ∠AEC·······················································································4分
(2)在△ABD中,∠BAD=90°,AD=10,,
∴,································································6分
∴,····················································7分
∴⊙O的半径为. ················································································8分
22.解:(1)由题意得四边形OCDE,四边形AEFB,均为矩形.························1分
∴CD=OE, AB=EF=0.5m,AE=BF,OC=ED=1.7.
设CD=OE=x,则OF=x+0.5,
在Rt△AEO中,∠AOE=42°,
∴,····································································2分
在Rt△BFO中,∠BOF=35°,
∴, ····································3分
∴,···············································································4分
∴,
即该同学到篮球框的水平距离CD是1.75米; ················································5分
(2)由(1)知,
∴,
即篮球筐距地面的高度AD大约是3.3米. ·······································8分
(结果未精确到0.1,扣1分)
23.解:(1)设每个足球的售价为x元,则每个篮球的售价为(x+20)元.·················1分
由题意得: ···································································3分
解得x=40 ································································································4分
经检验x=40是原方程的解且符合题意 ·····························································5分
∴x+20=60
答:每个足球售价为40元,每个篮球售价为60元 ··········································6分
(2)设购入m个足球,则购入(200-m)个篮球.
由题意得 ·····················································8分
解得 ·························································································9分
答:学校最少购入120个足球. ····································································10分
24. 解:(1)2,1. ······················································································2分
(2)结论:ND=ME,ND⊥ME.······································································3分
理由:∵∠DCE=∠MCN=90°,
∴∠DCE-∠DCM=∠MCN-∠DCM,
即∠DCN=∠MCE,
又∵CD=CE,CM=CN,
∴△DCN≌△ECM(SAS), ··········································································5分
∴ND=ME,∠CDN=∠CEM=45°,
∵∠CDE=45°,
∠NDE=∠NDC+∠CDE=90°,
∴ND⊥ME. ························································································7分
(3)连接BM,
∵∠NCM=∠ACB=90°,
∴∠ACN=∠BCM,
又∵NC=MC,AC=BC,
∴△ACN≌△BCM(SAS),··············································································9分
∴AN=BM,
当BM⊥DE时,BM最小,·············································································10分
过点B作BH⊥DE于H,
在Rt△DCE中,∠CDE=30°,CD=2,
∴,,
在Rt△BEH中,,
∴AN的最小值为.············································································12分
25. 解:(1)由,令y=0,得x=3,
∴A(3,0), ………………………………………………………………………………………1分
将(0,-3)代入,得c=-3,…………………………………………………2分
将(3,0)代入,得b=-2,
∴二次函数的表达式为:; ……………………………………………3分
(2)四边形ACED是平行四边形. …………………………………………………………4分
设点,
由得,
,,
∴, ……………………………5分
将点E坐标代入,得:
,
解得(舍),,…………………………………………………………………7分
把a=4代入,
y=5,∴D(4,5); ………………………………………………………………………………8分
(3)∵PF∥y轴,∴∠OCM=∠CFP,∴∠CFP≠90°,
①当∠CPF=∠COM=90°时,△COM∽△FPC,
由对称性知PC=2,∵D(4,5),
∴,
∴,∴PF=2CP=4;……………………………10分
②当∠PCF=∠COM=90°时,
△COM∽△FCP,
∵,
∴,FH=2CH,
∴,易求:y=2x-3,
设,F(b,2b-3),
,
∴,,
解得:,
∴,
∴存在点P,使得以P,C,F为顶点的三角形与△COM相似,
此时PF=4或. ………………………………………………………………………12分
2024年山东省济南市莱芜区中考三模数学试题: 这是一份2024年山东省济南市莱芜区中考三模数学试题,共8页。
2023年山东省济南市莱芜区中考数学三模试卷(含解析): 这是一份2023年山东省济南市莱芜区中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省济南市莱芜区中考三模数学试题(含答案): 这是一份2023年山东省济南市莱芜区中考三模数学试题(含答案),共13页。试卷主要包含了8B.2,5;72°;等内容,欢迎下载使用。