终身会员
搜索
    上传资料 赚现金

    专题10 数列综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题10 数列综合题(原卷版).docx
    • 解析
      专题10 数列综合题(解析版).docx
    专题10 数列综合题(原卷版)第1页
    专题10 数列综合题(原卷版)第2页
    专题10 数列综合题(原卷版)第3页
    专题10 数列综合题(解析版)第1页
    专题10 数列综合题(解析版)第2页
    专题10 数列综合题(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题10 数列综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用)

    展开

    这是一份专题10 数列综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题10数列综合题解析版docx、专题10数列综合题原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。


    (1)求数列的通项公式;
    (2)求证:.
    2.(2021•南京二模)已知数列的前项和为,且.
    (1)求数列的通项公式;
    (2)设,数列的前项和为,求的最小值及取得最小值时的值.
    3.(2021•江苏一模)已知等差数列满足.
    (1)求数列的通项公式;
    (2)记数列的前项和为.若,为偶数),求的值.
    4.(2021•江苏一模)已知等比数列的各项均为整数,公比为,且,数列中有连续四项在集合,,36,48,中.
    (1)求,并写出数列的一个通项公式;
    (2)设数列的前项和为,证明:数列中的任意连续三项按适当顺序排列后,可以成等差数列.
    5.(2021•江苏二模)已知等比数列的前项和,其中为常数.
    (1)求的值;
    (2)设,若数列中去掉数列的项后余下的项按原来的顺序组成数列,求的值.
    6.(2021•江苏二模)已知数列的前项和为,,,且.
    (1)证明:是等比数列,并求的通项公式;
    (2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.
    已知数列满足___,求的前项和.
    7.(2021•徐州模拟)数列中,且,其中为的前项和.
    (1)求的通项公式;
    (2)证明:.
    8.(2021•无锡模拟)已知数列的前项和为,且,,.
    (1)求数列,的通项公式;
    (2)设,数列的前项和为,求证:.
    9.(2021•江苏模拟)已知数列中,,,其前项和满足.
    (1)求数列的通项公式;
    (2)若,求数列的前项和.
    10.(2021•江苏模拟)(1)写出一个等差数列的通项公式,使满足①,②是等差数列,其中是的前项和.(写出一个就可以,不必证明)
    (2)对于(1)中的,设,求数列的前项和.
    11.(2021•苏州模拟)如图,在平面直角坐标系中,已知个圆,,,与轴和直线均相切,且任意相邻两圆外切,其中圆,,,,.
    (1)求数列的通项公式;
    (2)记个圆的面积之和为,求证:.
    12.(2021•扬州一模)已知数列的前项和为,,
    条件①:;条件②:.
    请在上面的两个条件中任选一个,补充在下面的横线上,完成下列两问的解答:
    (1)求数列的通项公式;
    (2)设,记数列的前项和为,求.
    13.(2021•淮安模拟)已知数列,其前项和为,且满足,.
    (1)求;
    (2)求满足的最小整数.
    14.(2021•如皋市模拟)已知数列的前项和为,已知,且当,时,.
    (1)证明数列是等比数列;
    (2)设,求数列的前项和.
    15.(2021•江苏模拟)在①,;②;③这三个条件中任选一个,补充在下面问题中,并作答:
    (1)求的通项公式;
    (2)求的前项和.
    16.(2021•南京三模)已知等差数列满足:,,成等差数列,且,,成等比数列.
    (1)求数列的通项公式;
    (2)在任意相邻两项与,2,之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前项和,求满足的的最大值.
    17.(2021•常州一模)已知数列满足:,.
    (1)求证数列是等比数列;
    (2)若数列满足,求的最大值.
    18.(2021•江苏模拟)设是集合,且,中所有的数从小到大排列成的数列,即,,,,,,.将各项按照上小下大、左小右大的原则写成如下的三角形数表.
    (1)写出该三角形数表的第四行、第五行各数(不必说明理由),并求;
    (2)设是该三角形数表第行的个数之和所构成的数列,求的前项和.
    19.(2021•常州一模)设等比数列的公比为,前项和为.
    (1)若,,求的值;
    (2)若,,且,,求的值.
    20.(2021•锡山区校级三模)若数列满足,且存在常数,使得对任意的都有,则称数列为“控数列”.
    (1)若公差为的等差数列是“2控数列”,求的取值范围;
    (2)已知公比为的等比数列的前项和为,数列与都是“控数列”,求的取值范围(用表示).
    21.(2021•苏州模拟)设是等比数列,公比大于0,是等差数列,.已知,,,.
    (1)求和的通项公式:
    (2)设数列满足,,其中,求数列的前项和.
    22.(2021•江苏模拟)已知数列满足,.
    (1)求数列的通项公式;
    (2)若数列满足,求数列的前项和.
    23.(2021•南通模拟)已知数列满足:,设,.
    (1)求数列的通项公式;
    (2)设数列其前项和为,如果对任意的恒成立,求实数的取值范围.
    24.(2021•江苏模拟)数列的前项和为,,对任意的有,.
    (1)求数列的通项公式;
    (2)设数列,,,,求数列的通项公式.
    25.(2021•无锡一模)已知等差数列的首项为2,前项和为,正项等比数列的首项为1,且满足,.
    (1)求数列,的通项公式;
    (2)设,求数列的前26项和.
    26.(2021•江苏模拟)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目.
    设首项为2的数列的前项和为,前项积为,且_______.
    (1)求数列的通项公式;
    (2)设,求数列的前项和.
    27.(2021•滨海县校级模拟)已知数列的前项和为,,数列满足,,数列为等差数列.
    (1)求与的通项公式;
    (2)设,数列的前项和为.若对于任意均有,求正整数的值.
    28.(2021•苏州模拟)已知数列为等比数列,且各项均为正数,,是与的等差中项.记正项数列前项之积为,,.
    (1)求数列与的通项公式;
    (2)证明:.
    29.(2021•江苏模拟)已知数列满足,.
    (1)求数列的通项公式;
    (2)设为数列的前项和,求证:.
    30.(2021•盐城三模)请在①;②;③这3个条件中选择1个条件,补全下面的命题使其成为真命题,并证明这个命题(选择多个条件并分别证明的按前1个评分).
    命题:已知数列满足,若____,则当时,恒成立.

    相关试卷

    专题15 导数综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用):

    这是一份专题15 导数综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题15导数压轴题解析版docx、专题15导数压轴题原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    专题14 圆锥曲线综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用):

    这是一份专题14 圆锥曲线综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题14圆锥曲线压轴题解析版docx、专题14圆锥曲线压轴题原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    专题13 概率综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用):

    这是一份专题13 概率综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题13概率综合题解析版docx、专题13概率综合题原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题10 数列综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map