所属成套资源:备战2022年新高考数学模拟试题分类汇编(江苏专用)
专题13 概率综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用)
展开
这是一份专题13 概率综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题13概率综合题解析版docx、专题13概率综合题原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
(1)估计该市这次竞赛活动得分优秀者的人数是多少万人?
(2)该市文明办为调动市民参加竞赛的积极性,制定了如下奖励方案:所有参加竞赛活动者,均可参加“抽奖赢电话费”活动,竞赛得分优秀者可抽奖两次,其余参加者抽奖一次.抽奖者点击抽奖按钮,即随机产生一个两位数,11,,,若产生的两位数的数字相同,则可奖励40元电话费,否则奖励10元电话费.假设参加竞赛活动的所有人均参加了抽奖活动,估计这次活动奖励的电话费总额为多少万元?
参考数据:若,则.
2.(2021•南京二模)某学校共有1000名学生,其中男生400人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了100名学生进行调查,月消费金额分布在之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:
将月消费金额不低于750元的学生称为“高消费群”.
(1)求的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);
(2)现采用分层抽样的方式从月消费金额落在,,,内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量,求的分布列及数学期望;
(3)若样本中属于“高消费群”的女生有10人,完成下列列联表,并判断是否有的把握认为该校学生属于“高消费群”与“性别”有关?
(参考公式:,其中
3.(2021•江苏一模)2019年4月,江苏省发布了高考综合改革实施方案,试行“”高考新模式.为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如表:
(1)根据所给数据完成上述表格,并判断是否有的把握认为该校学生选择物理或历史与性别有关;
(2)该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组.一段时间后,从该小组中抽取3人汇报数学学习心得.记3人中男生人数为,求的分布列和数学期望.
附:.
4.(2021•江苏一模)某地发现6名疑似病人中有1人感染病毒,需要通过血清检测确定该感染人员,血清检测结果呈阳性的即为感染人员,呈阴性表示没感染.拟采用两种方案检测:
方案甲:将这6名疑似病人血清逐个检测,直到能确定感染人员为止;
方案乙:将这6名疑似病人随机分成2组,每组3人.先将其中一组的血清混在一起检测,若结果为阳性,则表示感染人员在该组中,然后再对该组中每份血清逐个检测,直到能确定感染人员为止;若结果为阴性,则对另一组中每份血清逐个检测,直到能确定感染人员为止.
(1)求这两种方案检测次数相同的概率;
(2)如果每次检测的费用相同,请预测哪种方案检测总费用较少?并说明理由.
5.(2021•江苏二模)某公司对项目进行生产投资,所获得的利润有如下统计数据表:
(1)请用线性回归模型拟合与的关系,并用相关系数加以说明;
(2)该公司计划用7百万元对,两个项目进行投资.若公司对项目投资百万元所获得的利润近似满足:,求,两个项目投资金额分别为多少时,获得的总利润最大?
附:①对于一组数据,,,,,,,其回归直线方程的斜率和截距的最小二乘法估计公式分别为:,.
②线性相关系数.一般地,相关系数的绝对值在0.95以上(含认为线性相关性较强;否则,线性相关性较弱.
参考数据:对项目投资的统计数据表中,,.
6.(2021•新余二模)甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以或取胜的球队积3分,负队积0分;以取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为.
(1)甲、乙两队比赛1场后,求甲队的积分的概率分布列和数学期望;
(2)甲、乙两队比赛2场后,求两队积分相等的概率.
7.(2021•徐州模拟)某电子公司新开发一电子产品,该电子产品的一个系统有个电子元件组成,各个电子元件能正常工作的概率均为,且每个电子元件能否正常工作相互独立.若系统中有超过一半的电子元件正常工作,则系统可以正常工作,否则就需维修.
(1)当,时,若该电子产品由3个系统组成,每个系统的维修所需费用为500元,设为该电子产品需要维修的系统所需的总费用,求的分布列与数学期望;
(2)为提高系统正常工作的概率,在系统内增加两个功能完全一样的电子元件,每个新元件正常工作的概率均为,且新增元件后有超过一半的电子元件正常工作,则系统可以正常工作,问满足什么条件时,可以提高整个系统的正常工作概率?
8.(2021•江苏模拟)某观影平台为了解观众对最近上映的某部影片的评价情况(评价结果仅有“好评”、“差评”),从平台所有参与评价的观众中随机抽取216人进行调查,部分数据如表所示(单位:人)
(1)请将列联表补充完整,并判断是否有的把握认为“对该部影片的评价与性别有关”?
(2)若将频率视为概率,从观影平台的所有给出“好评”的观众中随机抽取3人,用随机变量表示被抽到的男性观众的人数,求的分布列;
(3)在抽出的216人中,从给出“好评”的观众中利用分层抽样的方法抽取10人,从给出“差评”的观众中抽取人.现从这人中,随机抽出2人,用随机变量表示被抽到的给出“好评”的女性观众的人数.若随机变量的数学期望不小于1,求的最大值.
参考公式:,其中.
参考数据:
9.(2021•江苏模拟)某奶茶店推出一款新品奶茶,每杯成本4元,售价6元.如果当天卖不完,剩下的奶茶只能倒掉.奶茶店记录了60天这款新品奶茶的日需求量,整理得如表:
以60天记录的各需求量的频率作为各需求量发生的概率.
(1)从这60天中任取2天,求这2天的日需求量至少有一天为35的概率;
(2)①若奶茶店一天准备了35杯这款新品奶茶,用表示当天销售这款新品奶茶的利润(单位:元),求的分布列和数学期望;
②假设奶茶店每天准备的这款新品奶茶倍数都是5的倍数,有顾客建议店主每天准备40杯这款新品奶茶,你认为店主应该接受这个建议吗?请说明理由.
10.(2021•苏州模拟)随着视频传输和移动通信技术的日益成熟、以及新冠疫情的推动,直播电商的模式正在全球范围内掀起热潮.目前,国际上、等电商平台和以为代表的社交类平台都纷纷上线了直播电商业务;在国内,淘宝、京东、抖音、拼多多、苏宁等众多平台都已成为该赛道内的玩家.根据中研产业研究院《年中国直播电商行业市场深度分析及投资战略咨询研究报告》显示,2020年上半年,“直播经济”业态主要岗位的人才达到2019年同期的2.4倍;2020年“”期间,带货主播和直播运营两大岗位高达去年同期的11.6倍.针对这一市场现象,为了加强监管,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)请完成关于商品和服务评价的列联表,并判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量,求对商品和服务全为好评的次数的分布列和数学期望.
附临界值表:
的观测值:(其中
11.(2021•扬州一模)某研究性学习小组收集了某网络销售平台近五年“双十一”当天成交额的数据,并制成如下表格:
(1)小组成员小明准备用线性模型刻画与的关系,请帮助小明求出线性方程;参考公式:线性回归方程中的,.
(2)小组成员小王收集了更多的数据信息,借助计算机整理得到图:
小王提出,从图上来看,刻画与的关系选用线性模型明显不合理,而二次函数,,,模型或指数函数模型,,,,均有可能.已知中国人均可支配收入与中国互联网用户人均该平台消费额呈正线性相关,请你依据图表中的信息,帮助小王选择一个合理的函数模型,并简要说明理由(不需要求出,,
(3)“双十一”活动中,顾客可以享受优惠‘也可能会冲动消费,导致所购物品闲置.(闲置物品全部在某二手平台上以原价的售出).某商户对标价100元的某种商品采取了3种销售形式促销:普通购物,秒杀购物,直播购物.该小组收集了相关信息整理得下表:
用频率估计概率,从数学期望的角度,判断顾客购买该商品是否划算?
注:折扣率;所购物品闲置率.
12.(2021•淮安模拟)2021淮安西游乐园淮安马拉松将于4月18日在江苏淮安举行.本次比赛是淮安举办的首个全程马拉松比赛,是“奔跑中国”马拉松系列赛的重要一站,是一次纪念建党100周年的伟人故里行、体验千秋淮扬文脉的运河文化行、品味江淮旖旎风光的绿色高地行、感受淮安和合南北之便的枢纽新城行.为了调查学生喜欢跑步是否与性别有关,某高中选取了200名学生进行了问卷调查,得到如下的列联表:
已知在这200名学生中随机抽取1人抽到喜欢跑步的概率为0.6.
(1)判断是否有的把握认为喜欢跑步与性别有关?
(2)从上述不喜欢跑步的学生中用分层抽样的方法抽取8名学生,再在这8人中抽取3人调查其喜欢的运动,用表示3人中女生的人数,求的分布列及数学期望
参考公式及数据:,其中.
13.(2021•如皋市模拟)2020年新冠肺炎疫情爆发以来,国家迅速采取最全面,最严格,最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情作出了贡献.为普及防治新冠肺炎的相关知识,某社区开展了线上新冠肺炎防控知识竞赛,现从大批参与者中随机抽取了200名幸运者的成绩进行分析,他们的得分(满分100分)数据统计结果如表:
(1)若此次知识竞赛得分整体服从正态分布,用样本来估计总体,设,分别为抽取的200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(四舍五入取整数),及的值;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对随机抽取的200名幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖,抽到18元红包的概率为,抽到36元红包的概率为.已知张三是这次活动中的幸运者,记为张三在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要的抽奖红包的总金额.
参考数据:;;.
14.(2021•江苏模拟)近年来,我国的电子商务行业发展迅速,与此同时,相关管理部门建立了针对电商的商品和服务评价系统.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务均为好评的有80次.
(1)是否可以在犯错误概率不超过0.1的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的4次购物中,设对商品和服务全好评的次数为随机变量,求对商品和服务全好评的次数的分布列及其期望.
参考公式:独立性检验统计量,其中.
临界值表:
15.(2021•南京三模)某乒乓球教练为了解某同学近期的训练效果,随机记录了该同学40局接球训练成绩,每局训练时教练连续发100个球,该同学每接球成功得1分,否则不得分,且每局训练结果相互独立,得到如图所示的频率分布直方图.
(1)同一组数据用该区间的中点值作代表,
①求该同学40局接球训练成绩的样本平均数.
②若该同学的接球训练成绩近似地服从正态分布,其中近似为样本平均数,求的值;
(2)为了提高该同学的训练兴趣,教练与他进行比赛.一局比赛中教练连续发100个球,该同学得分达到80分为获胜,否则教练获胜.若有人获胜达3局,则比赛结束,记比赛的局数为.以频率分布直方图中该同学获胜的频率作为概率,求.
参考数据:若随机变量,则
,
,
.
16.(2021•常州一模)调查某种新型作物在某地的耕种状况与农民收入的关系,现在当地农户中随机选取了300户农民进行了统计,发现当年收入水平提高的农户占,而当年选择耕种作物的农户占,既选择作物又收入提高的农户为180户.
(1)完成下面列联表,并分析是否有的把握认为种植作物与收入提高有关;
附:,.
(2)某农户决定在一个大棚内交替种植,,三种作物,为了保持土壤肥度,每种作物都不连续种植.开始时选择作物种植,后因习惯,在每次种植后会有的可能性种植,的可能性种植;在每次种植的前提下再种植的概率为,种植的概率为,在每次种植的前提下再种植的概率为,种植的概率为.若仅种植三次,求种植作物次数的分布列及期望.
17.(2021•江苏模拟)品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出且瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以,,,,表示第一次排序时被排在1,2,3,,的种酒在第二次排序时的序号,并令,则是对两次排序的偏离程度的一种描述.
(1)证明:无论取何值,的可能取值都为非负偶数;
(2)取,假设在品酒师仅凭随机猜测来排序的条件下,,,,等可能地为1,2,3,4的各种排列,且各轮测试相互独立.
①求的分布列和数学期望;
②若某品酒师在相继进行的三轮测试中,都有,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.
18.(2021•常州一模)已知某射手射中固定靶的概率为,射中移动靶的概率为,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.
(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率;
(2)求该射手的总得分的分布列和数学期望.
19.(2021•湖北模拟)最近考试频繁,为了减轻同学们的学习压力,班上决定进行一次减压游戏.班主任把除颜色不同外其余均相同的8个小球放入一个纸箱子,其中白色球与黄色球各3个,红色球与绿色球各1个.现甲、乙两位同学进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,规定摸球人得分不低于8分获胜.比赛规则如下:①只能一个人摸球;②摸出的球不放回;③摸球的人先从袋中摸出1球;若摸出的是绿色球,则再从袋子里摸出2个球;若摸出的不是绿色球,则再从袋子里摸出3个球,他的得分为两次摸出的球的记分之和;④剩下的球归对方,得分为剩下的球的记分之和.
(1)若甲第一次摸出了绿色球,求甲获胜的概率;
(2)如果乙先摸出了红色球,求乙得分的分布列和数学期望;
(3)第一轮比赛结束,有同学提出比赛不公平,提出你的看法,并说明理由.
20.(2021•苏州模拟)在新的高考改革形式下,江苏、辽宁、广东、河北、湖南、湖北、福建、重庆八个省市在2021年首次实施“”模式新高考.为了适应新高考模式,在2021年1月23日至1月25日进行了“八省联考”,考完后,网上流传很多种对各地考生考试成绩的评价,对12种组合的选择也产生不同的质疑.为此,某校随机抽一名考生小明(语文、数学、英语、物理、政治、生物的组合)在高一选科前某两次六科对应成绩进行分析,借此成绩进行相应的推断.表1是小明同学高一选科前两次测试成绩(满分100分)
表1
(1)从小明同学第一次测试的科目中随机抽取1科,求该科成绩大于90分的概率;
(2)从小明同学第一次测试和第二次测试的科目中各随机抽取1科,记为抽取的2科中成绩大于90分的科目数量,求的分布列和数学期望;
(3)现有另一名同学两次测试成绩(满分100分)及相关统计信息如表2所示:
表2
将每科两次测试成绩的均值作为该科的总评成绩,这6科总评成绩的方差为.有一种观点认为:若,,能推出则有理由认为“八省联考”考生成绩与选科有关,否则没有理由否定12种选科模式的不合理性,即新高考模式12种选科模式是可取的.假设这种观点是正确的,通过表2内容,你认为新高考模式12种组合选科模式是否可取?
21.(2021•江苏模拟)定向越野起源于欧洲,是一种借助地图,指南针,在一个划定的区域内,通过对地形地貌的判断.设计合理路线到达各个目标点位,最后到达终点的运动,湖南青葵定向体育发展有限公司为了推广定向活动,对学生群体进行定向越野的介绍和培训,并对初步了解了定向活动的学生是否会参加定向越野活动进行调查.随机抽取了200位中小学生进行调查、得到如下数据:准备参加定向越野的小学生有80人,不准备参加定向越野的小学生有40人,准备参加定向越野的中学生有40人.
(1)完成下列列联表,并根据列联表判断是否有的把握认为这200位参与调查的中小学生是否准备参加定向越野与中小学生年龄有关.
(2)为了储备定向后备力量,备战全国赛,提高会员定向水平.俱乐部将小学生会员分组进行比赛.两人一组,每周进行一轮比赛,每小组两人每人跑两张地图(跑一张地图视为一次),达到教练设定的成绩标准的次数之和不少于3次称为“优秀小组”.小超与小红同一小组,小超、小红达到教练设定的成绩标准的概率分别为,,且,理论上至少要进行多少轮比赛,才能使得小超、小红小组在比赛中获得“优秀小组”次数的期望值达到16次?并求此时,的值.
附:.
22.(2000•北京)某地区上年度电价为0.8元,年用电量为,本年度计划将电价降到0.55元至0.75元之间,而用户期望电价为0.4元经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为.该地区电力的成本为0.3元.
(1)写出本年度电价下调后,电力部门的收益与实际电价的函数关系式;
(2)设,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长?
(注:收益实际用电量(实际电价成本价)
23.(2021•江苏模拟)今年两会期间国家对学生学业与未来发展以及身体素质的重要性的阐述引起了全社会的共鸣.某大学学生发展中心对大一的400名男生做了单次引体向上的测试,得到了如图所示的直方图(引体向上个数只记整数).学生发展中心为进一步了解情况,组织了两个研究小组.
(1)第一小组决定从单次完成个的引体向上男生中,按照分层抽样抽取11人进行全面的体能测试,
①单次完成个引体向上的男生甲被抽到的概率是多少?
②该小组又从这11人中抽取3人进行个别访谈,记抽到“单次完成引体向上个”的人数为随机变量,求的分布列和数学期望;
(2)第二小组从学校学生的成绩与体育锻炼相关性角度进行研究,得到了这400人的学业成绩与体育成绩之间的列联表.
请你根据联表判断是否有的把握认为体育锻炼与学业成绩有关?
参考公式及数据:.
24.(2021•无锡一模)已知某班有50位学生,现对该班关于“举办辩论赛”的态度进行调查,他们综合评价成绩的频数分布以及对“举办辩论赛”的赞成人数如表:
(1)请根据以上统计数据填写下面列联表,并回答:是否有的把握认为“综合评价成绩以80分位分界点”对“举办辩论赛”的态度有差异?
(2)若采用分层抽样在综合评价成绩在,,,的学生中随机抽取10人进行追踪调查,并选其中3人担任辩论赛主持人,求担任主持人的3人中至少有1人在,的概率.
参考公式:,其中.
参考数据:
25.(2020秋•徐州月考)某中学开展劳动实习,学生前往电子科技产业园,学习加工制造电子元件.已知学生加工出的每个电子元件正常工作的概率都是,且各个电子元件正常工作的事件相互独立.现要检测个这样的电子元件,并将它们串联成元件组进行筛选检测,若检测出元件组正常工作,则认为这个电子元件均正常工作;若检测出元件组不能正常工作,则认为这个电子元件中必有一个或多个电子元件不能正常工作,须再对这个电子元件进行逐一检测.
(1)记对电子元件总的检测次数为,求的概率分布和数学期望;
(2)若,利用的二项展开式的特点,估算当为何值时,每个电子元件的检测次数最小,并估算此时总的检测次数;
(3)若不对生产出的电子元件进行筛选检测,将它们随机组装入电子系统中,不考虑组装时带来的影响.已知该系统配置有个电子元件,如果系统中有多于一半的电子元件正常工作,该系统就能正常工作.将系统正常工作的概率称为系统的可靠性,现为了改善该系统的性能,拟向系统中增加两个电子元件.试分析当满足什么条件时,增加两个电子元件能提高该系统的可靠性?
26.(2021•南通模拟)某校团委组织“航天知识竞赛”活动,每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得10分,回答错误得分;第三个问题回答正确得10分,回答错误得分.规定,每位参赛者回答这三个问题的总得分不低于20分就算闯关成功.若每位参赛者回答前两个问题正确的概率都是,回答第三个问题正确的概率都是,且各题回答正确与否相互之间没有影响.
(1)求参赛者甲仅回答正确两个问题的概率;
(2)求参赛者甲回答这三个问题的总得分的分布列、期望和闯关成功的概率.
27.(2021•滨海县校级一模)学校趣味运动会上增加了一项射击比赛,比赛规则如下:向、两个靶子进行射击,先向靶射击一次,命中得1分,没有命中得0分;再向靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向靶射击,命中的概率是;向靶射击,命中的概率为.假设甲同学每次射击结果相互独立.
(1)求甲同学恰好命中一次的概率;
(2)求甲同学获得的总分的分布列及数学期望.
28.(2021•江苏模拟)某中学的一个高二学生社团打算在开学初组织部分同学参加打扫校园志愿活动.该社团通知高二同学自愿报名,由于报名的人数多达50人,于是该社团采用了在报名同学中用抽签的方式来确定打扫校园的人员名单.抽签方式如下:将50名同学编号,通过计算机从这50个编号中随机抽取30个编号,然后再次通过计算机从这50个编号中随机抽取30个编号,两次都被抽取到的同学可参加活动.
(1)设该校高二年级报名参加活动的甲同学的编号被抽取到的次数为,求的分布列和数学期望;
(2)设两次都被抽取到的人数为变量,则的可能取值是哪些?其中取到哪一个值的可能性最大?请说明理由.
29.(2018•成都模拟)近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:
(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元券,获得2元券的概率分别是,,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.
参考数据:
参考公式:,其中.
30.(2021•苏州模拟)某贫困地区截至2016年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.现从这些尚未实现小康的家庭中随机抽取50户,得到这50户2016年的家庭人均年纯收入的频率分布直方图.
(1)将家庭人均年纯收入不足5000元的家庭称为“特困户”,若从这50户中再取出10户调查致贫原因,求这10户中含有“特困户”的户数的数学期望;
(2)假设2017年底该地区有1000户居民,其中900户为小康户,100户为“特困户”,若每经过一年的脱贫工作后,“特困户”中有变为小康户,但小康户仍有变为“特困户”,假设该地区居民户数保持不变,记经过年脱贫工作后该地区小康户数为.
(ⅰ)求并写出与的关系式;
(ⅱ)要使经2年脱贫工作后该地区小康户数至少有950户,求最大的正整数的值.
属于“高消费群”
不属于“高消费群”
合计
男
女
合计
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
性别
科目
男生
女生
合计
物理
300
历史
150
合计
400
800
0.050
0.010
0.001
3.841
6.635
10.828
项目投资金额(单位:百万元)
1
2
3
4
5
所获利润(单位:百万元)
0.3
0.3
0.5
0.9
1
好评
差评
合计
男性
68
108
女性
60
合计
216
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
日需求量杯数
20
25
30
35
40
45
50
天数
5
5
10
15
10
10
5
对服务好评
对服务不满意
合计
对商品好评
80
对商品不满意
10
合计
200
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
年份
2015
2016
2017
2018
2019
成交额(百亿元)
9
12
17
21
27
普通购物
秒杀购物
直播购物
销售量占比
折扣率
所购物品闲置率
喜欢跑步
不喜欢跑步
合计
男生
80
女生
20
合计
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
0.46
0.71
1.32
2.07
2.71
3.84
5.024
6.635
7.879
10.828
得分
人数
频率
,
5
0.025
,
30
0.150
,
40
0.200
,
50
0.250
,
45
0.225
,
20
0.100
,
10
0.050
合计
200
1
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
种植作物的数量
未种植作物的数量
合计
收入提高的数量
收入未提高的数量
合计
语文
数学
英语
物理
政治
生物
第一次
87
92
91
92
85
93
第二次
82
94
95
88
94
87
语文
数学
英语
物理
政治
生物
6科成绩均值
6科成绩方差
第一次
第二次
准备参加定向越野
不准备参加定向越野
合计
小学生
中学生
合计
0.50
0.25
0.05
0.025
0.010
0.455
1.323
3.841
5.024
6.635
学业优秀
学业不优秀
总计
体育成绩不优秀
100
200
300
体育成绩优秀
50
50
100
总计
150
250
400
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
0.46
0.71
1.32
2.07
2.71
3.84
5.024
6.635
7.879
10.828
综合评价成绩(单位:分)
,
,
,
,
,
,
频数
5
10
15
10
5
5
赞成人数
4
8
12
4
3
1
综合评价成绩小于80分的人数
综合评价成绩不小于80分的人数
合计
赞成
不赞成
合计
0.10
0.05
0.010
0.005
2.706
3.841
6.635
7.879
对优惠活动好评
对优惠活动不满意
合计
对车辆状况好评
100
30
130
对车辆状况不满意
40
30
70
合计
140
60
200
0.150
0.100
0.050
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
相关试卷
这是一份专题15 导数综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题15导数压轴题解析版docx、专题15导数压轴题原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份专题14 圆锥曲线综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题14圆锥曲线压轴题解析版docx、专题14圆锥曲线压轴题原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
这是一份专题12 立体几何综合题-备战2022年新高考数学模拟试题分类汇编(江苏专用),文件包含专题12立体几何综合题解析版docx、专题12立体几何综合题原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。