2022年高考押题预测卷02-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析)...
展开2022年高考押题预测卷02
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知,则复数在复平面内对应的点位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
2.设集合则( )
A. B. C. D.
3.若向量,,则“”是“向量,夹角为钝角”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的,第2关收税金为剩余金的,第3关收税金为剩余金的,第4关收税金为剩余金的,第5关收税金为剩余金的,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为斤,设,则( )
A. B.7 C.13 D.26
5.由国家信息中心“一带一路”大数据中心等编写的《“一带一路”贸易合作大数据报告(2017)》到2016年这六年中,中国与“一带一路”沿线国家出口额和进口额图表如下,下列说法中正确的是( )
中国与“一带一路”沿线国家出口额和进口额(亿美元)
A. 中国与沿线国家贸易进口额的极差为1072.5亿美元
B. 中国与沿线国家贸易出口额的中位数不超过5782亿美元
C. 中国与沿线国家贸易顺差额逐年递增(贸易顺差额=贸易出口额-贸易进口额)
D. 中国与沿线国家前四年的贸易进口额比贸易出口额更稳定
6.柯西分布(Cauchy distribution)是一个数学期望不存在的连续型概率分布.记随机变量服从柯西分布为,其中当,时的特例称为标准柯西分布,其概率密度函数为.已知, , ,则( )
A. B. C. D.
7.已知抛物线E:,圆F:,直线l:(t为实数)与抛物线E交于点A,与圆F交于B,C两点,且点B位于点C的右侧,则△FAB的周长可能为( )
A. 4 B. 5 C. 6 D. 7
8.设,,,则下列关系正确的是( )
A. B.
C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.从装有5只红球、5只白球的袋中任意取出3只球,下列各对事件为对立事件的有( )
A. “取出2只红球和1只白球”与“取出1只红球和2只白球”
B. “取出3只红球”与“取出的3只球中至少有1只白球”
C. “取出3只红球”与“取出3只白球”.
D. “取出的3只球中至少有2只红球”与“取出的3只球中至少有2只白球”
10.若平面向量,则下列说法中正确的是( )
A. 若,则
B. 若,则
C. 若,则或
D. 若,则
11.已知正四棱台(上下底面都是正方形的四棱台).下底面ABCD边长为2,上底面边长为1,侧棱长为,则( )
A. 它的表面积为
B. 它的外接球的表面积为
C. 侧棱与下底面所成的角为60°
D. 它的体积比棱长为的正方体的体积大
12.已知椭圆的左、右焦点分别为,(如图),离心率为,过的直线垂直于x轴,且在第二象限中交E于点A,直线交E于点B(异于点A),则下列说法正确的是( )
A.若椭圆E的焦距为2,则短轴长为
B.的周长为4a
C.若的面积为12,则椭圆E的方程为
D.与的面积的比值为
三、填空题:本题共4小题,每小题5分,共20分.
13.已知的展开式中的系数为____________
14.已知直线:,函数,若存在切线与关于直线对称,则__________.
15.2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程
若第1个图中的三角形的周长为1,则第n个图形的周长为___________;若第1个图中的三角形的面积为1,则第n个图形的面积为___________.
16.若,则的取值范围为______.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.从①,②这两个条件中选一个,补充在下面问题中,并解答.
已知的内角,,的对边分别为,,,且 .
(1)求的值;
(2)若的外接圆半径为,求的最大值.(注:如果选择多个条件分别作答,按第一个解答记分)
18.已知数列的前项和为,各项均为正数的数列的前项积为,且,,.
(1)求的通项公式;
(2)证明:为等比数列.
19.某大学为了鼓励大学生自主创业,举办了“校园创业知识竞赛”,该竞赛决赛局有、两类知识竞答挑战,规则为进入决赛的选手要先从、两类知识中选择一类进行挑战,挑战成功才有对剩下的一类知识挑战的机会,挑战失败则竞赛结束,第二类挑战结束后,无论结果如何,竞赛都结束.、两类知识挑战成功分别可获得万元和万元创业奖金,第一类挑战失败,可得到元激励奖金.已知甲同学成功晋级决赛,面对、两类知识的挑战成功率分别为、,且挑战是否成功与挑战次序无关.
(1)若记为甲同学优先挑战类知识所获奖金的累计总额(单位:元),写出的分布列;
(2)为了使甲同学可获得的奖金累计总额期望更大,请帮甲同学制定挑战方案,并给出理由.
20.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的余弦值.
21.设双曲线C:(a>0,b>0)的左、右焦点分别是F1,F2,渐近线分别为l1,l2,过F2作渐近线的垂线,垂足为P,且△OPF1的面积为.
(1)求双曲线C的离心率;
(2)动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8,是否存在总与直线l有且只有一个公共点的双曲线C,若存在,求出双曲线C的方程;若不存在,说明理由.
22.设函数.
(1)当时,讨论的单调性;
(2)若在上单调递增,求.
2022年高考押题预测卷01-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析)..: 这是一份2022年高考押题预测卷01-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析)..,文件包含2022年高考押题预测卷01-决胜2022年高考押题预测卷江苏等八省新高考地区专用解析版docx、2022年高考押题预测卷01-决胜2022年高考押题预测卷江苏等八省新高考地区专用原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
2022年高考押题预测卷09-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析).doc...: 这是一份2022年高考押题预测卷09-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析).doc...,文件包含2022年高考押题预测卷09-决胜2022年高考押题预测卷江苏等八省新高考地区专用解析版docdocx、2022年高考押题预测卷09-决胜2022年高考押题预测卷江苏等八省新高考地区专用原卷版docdocx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
2022年高考押题预测卷04-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析).doc...: 这是一份2022年高考押题预测卷04-决胜2022年高考押题预测卷(江苏等八省新高考地区专用)(原卷+解析).doc...,文件包含2022年高考押题预测卷04-决胜2022年高考押题预测卷江苏等八省新高考地区专用解析版docdocx、2022年高考押题预测卷04-决胜2022年高考押题预测卷江苏等八省新高考地区专用原卷版docdocx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。