2022年中考压轴题专题讲练一 最短路径问题
展开
这是一份2022年中考压轴题专题讲练一 最短路径问题,共13页。
2022年中考压轴题专题讲练一 最短路径相关问题【做题思路】: 一般在二次函数中,会求PA+PC的最小值,且点P为动点;对于这类问题,首先将动点所在直线作为“河”,根据“将军饮马问题”的作图步骤,作出图形。【做题步骤】:①首先找出“河”:动点所在直线就是“河”;②选出其中一个特殊定点,做关于“河”的对称点;③连接对称点与另一个定点;④连线与河的交点即为动点所在位置,连线长度即为最短路径长(可以用两点之间距离公式);【变换类型】求一个三角形的周长最短:周长就是三条线段相加,其中有一条线段是确定的,两条线段长随着动点运动而变化,那么只需要求出与动点相连两定点的线段最小值即可,也就是求两个线段的最小值。【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】【问题1】作法图形原理 在直线l上求一点P,使PA+PB值最小.连AB,与l交点即为P.两点之间线段最短.PA+PB最小值为AB.【问题2】“将军饮马”作法图形原理 在直线l上求一点P,使PA+PB值最小.作B关于l的对称点B'连A B',与l交点即为P.两点之间线段最短.PA+PB最小值为A B'.【问题3】作法图形原理 在直线、上分别求点M、N,使△PMN的周长最小.分别作点P关于两直线的对称点P'和P'',连P'P'',与两直线交点即为M,N.两点之间线段最短.PM+MN+PN的最小值为线段P'P''的长.【问题4】作法图形原理 在直线、上分别求点M、N,使四边形PQMN的周长最小.分别作点Q 、P关于直线、的对称点Q'和P'连Q'P',与两直线交点即为M,N.两点之间线段最短.四边形PQMN周长的最小值为线段P'P''的长.【问题5】“造桥选址”作法图形原理 直线∥,在、,上分别求点M、N,使MN⊥,且AM+MN+BN的值最小.将点A向下平移MN的长度单位得A',连A'B,交于点N,过N作NM⊥于M.两点之间线段最短.AM+MN+BN的最小值为A'B+MN.【问题6】作法图形原理 在直线上求两点M、N(M在左),使,并使AM+MN+NB的值最小.将点A向右平移个长度单位得A',作A'关于的对称点A'', 连A''B,交直线于点N,将N点向左平移个单位得M.两点之间线段最短.AM+MN+BN的最小值为A''B+MN.【问题7】作法图形原理 在上求点A,在上求点B,使PA+AB值最小. 作点P关于的对称点P',作P'B⊥于B,交于A.点到直线,垂线段最短.PA+AB的最小值为线段P'B的长.【问题8】作法图形原理 A为上一定点,B为上一定点,在上求点M,在上求点N,使AM+MN+NB的值最小. 作点A关于的对称点A',作点B关于的对称点B',连A'B'交于M,交于N.两点之间线段最短.AM+MN+NB的最小值为线段A'B'的长.【问题9】作法图形原理 在直线l上求一点P,使的值最小.连AB,作AB的中垂线与直线l的交点即为P.垂直平分上的点到线段两端点的距离相等.=0.【问题10】作法图形原理 在直线l上求一点P,使的值最大.作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB.的最大值=AB.【问题11】作法图形原理 在直线l上求一点P,使的值最大.作B关于l的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤AB'.最大值=AB'.【问题12】“费马点”作法图形原理 △ABC中每一内角都小于120°,在△ABC内求一点P,使PA+PB+PC值最小.所求点为“费马点”,即满足∠APB=∠BPC=∠APC=120°.以AB、AC为边向外作等边△ABD、△ACE,连CD、BE相交于P,点P即为所求.两点之间线段最短.PA+PB+PC最小值=CD.
几何中的最短路径问题1. 如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是
A. B. C. D.2. 如图,,为内部一条射线,点为射线上一点,为,点,分别为射线,上的动点,则周长的最小值是( )
A. B. C. D.3. 如图,在锐角三角形中,=,的面积为,平分.若、分别是、上的动点,则的最小值是( )
A. B. C. D.4. 如图,四边形中,=,==,在、上分别找一点、,使周长最小时,则的度数为( )
A. B. C. D.5.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A. B.1 C. D.2 6.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )A. B. C.5 D.1.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(-3,0) B.(-6,0) C.(-,0) D.(-,0) 2.如图,A(3,4),B(0,1),C为x轴上一动点,当△ABC的周长最小时,则点C的坐标为_________. 1.如图,抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,与y轴交于C点,M点在抛物线的对称轴上,当点M到点B的距离与到点C的距离之和最小时,点M的坐标为_____. 2.如图,已知直线与轴交于点,与轴交于点,抛物线与直线交于、两点,与轴交于、两点,且点坐标为.在抛物线的对称轴上找一点,使的值最大,求出点的坐标___ 阅读材料: 例:说明代数式 的几何意义,并求它的最小值.解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=,即原式的最小值为.根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)(2)代数式 的最小值. 1.(昭阳区九上期中测试题)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当MC+MA的值最小时,求点M的坐标. 2.(2020年云南中考真题节选)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标; 3.(2020年云南中考模拟题)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标. 4.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为 ,G点坐标为 ;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标. 5.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标和△BDM的周长最小值;
相关试卷
这是一份中考数学复习专题精讲+初中数学压轴40练,共63页。
这是一份专题2.2 图形规律问题(压轴题专项讲练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题22图形规律问题压轴题专项讲练人教版原卷版docx、专题22图形规律问题压轴题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份专题1.2 绝对值的综合(压轴题专项讲练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题12绝对值的综合压轴题专项讲练人教版原卷版docx、专题12绝对值的综合压轴题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。