年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版)

    2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版)第1页
    2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版)第2页
    2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版)第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版)

    展开

    这是一份2021-2022学年四川省邻水实验学校高二下学期第二次月考暨期中考试数学(理)试题(Word版),共11页。试卷主要包含了单选题,填空题,解答题,选做题等内容,欢迎下载使用。
     四川省实验学校2021-2022学年高二下学期第二次月考期中考数学(理科)试卷总分:150           时间:120分钟第I卷(选择题)一、单选题(共60分)1.已知,则下列向量中与平行的是(   A B C D2.已知是虚数单位,复数在复平面内对应的点分别为,则复数的共轭复数的虚部为(    )A B C D3.已知,则过点P(-10)且与曲线相切的直线方程为(       A BC D4.若,则    A1 B2 C3 D45.用反证法证明,则abc中至少有一个为0”的第一步假设应为(       Aabc全为0 Babc中至多有一个为0Cabc不全为0 Dabc全不为06.函数的图像与的图像所围成的图形的面积为(    A B C D7.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是   A.甲 B.乙 C.丙 D.丁8.下列说法错误的是(   A.同一平面内,直线abc,若,则.类比推出:空间中,平面,若,则B.由猜想是归纳推理C.由锐角满足,推出演绎推理D因为恒成立,所以函数是偶函数是省略大前提的三段论9.如图,已知空间四边形OABC,其对角线为OBAC.MN分别是对边OBAC的中点,点G在线段MN上,,现用基向量表示向量,设,则的值分别是(                             (第9题)                (第10题)A BC D10.如图,已知正方体中,F为线段的中点,E为线段上的动点,则下列四个结论:1存在点E,使2存在点E,使平面3EF所成的角不可能等于4三棱锥的体积为定值.其中正确结论的个数是(   A4 B3 C2 D11.已知直线与曲线3个不同交点,且,则   A6 B8 C9 D1212.已知函数,关于的不等式有且只有三个整数解,则实数的取值范围是  A B C D第II卷(非选择题)二、填空题(共20分)13.设i是虚数单位,复数 ,则___________.14.若函数满足,则________15.已知三点A123),B212),P112)点Q在直线OP上运动,则当取得最小值时,Q点的坐标          16.若函数 上只有一个零点,则常数的取值范围是________.三、解答题(共60分)17.己知数列满足,且.(1)求出的值,猜想数列的通项公式(2)试用数学归纳法证明数列的通项公式     18.已知函数.1)求的单调区间;2)当时,求函数的极值.    19.如图,四棱锥PABCD中,PA底面ABCDABAD,点E在线段AD上,(1)求证:CEPD(2)PAAB1AD3,且,求平面ABP与平面PCE所成锐二面角的余弦值.      20.如图,斜三棱柱中,三角形ABC为正三角形,为棱上的一点,平面平面.(1)证明:平面(2)已知平面平面,求二面角的正弦值.     21.已知函数.(1)恒成立,求实数a的取值范围,(2),证明.   四、选做题(共10分)22.在平面直角坐标系中,直线l的参数方程为t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.直线l与曲线C交于MN两点.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)设点,求的值.   23.已知函数(1),求不等式的解集;(2)若存在,使得成立,求a的取值范围.
    参考答案:一.单选题1~5BACAD      6~10CAACC     11~12CA二.填空题13     14    15     16三.解答题17(1),猜想.(2)下用数学归纳法证明时,成立假设当时,成立,时,所以当时成立.得对任意成立.18.(1)由题意,函数,可得,由,可得;由,可得所以的递减区间为,递增区间为,由,可得;由,可得所以的递减区间为,递增区间为.2)当时,可得,即,解得变化时,的变化情况如下表:-0+0-递减极小值递增极大值递减 所以当时,函数取得极小值时,函数取得极大值.19(1)∵PA平面ABCD平面ABCDAD平面PADBA平面PADCE平面PAD平面PAD(2)∵A为原点,ABADAP所在直线为xyz轴建立空间直角坐标系,连结PEA000),B100),E020),P001),C120),由题意知平面PAB的一个法向量为设平面PCE的法向量为,得,取,则设所求二面角为,则20(1),则的中点.连结,则平面平面.因为平面平面,平面 平面= ,所以,从而的中点,因此.因为平面,所以.因为,所以平面.(2)解法1:以为坐标原点,轴正方向,为单位长,建立如图所示的建立空间直角坐标系,设.,故.为平面的法向量则可取为平面的法向量,则可取.可得,所以.为平面的法向量,则,即可取.因为,所以二面角的正弦值为.解法2:在平面内过点,垂足为,因为平面平面所以平面,故.由(1)及题设平面所以,又,因此平面,所以因此.为坐标原点,轴正方向,为单位长,建立如图所示的建立空间直角坐标系可知,可得为平面的法向量,则{可取为平面的法向量,则可取因为,于是二面角的正弦值.解法3:在平面内过点,垂足为,因为平面平面,所以平面,故.由(1)及已知平面,又,所以因此平面所以,因此.在平面内过点,垂足为,连结易得,所以是二面角的平面角.,则,在直角中,,可得.在等腰中,可得所以二面角的正弦值.21(1)解:因为函数的定义域为,所以恒成立等价于恒成立,所以.,则.时,单调递增;当时,单调递减.所以,故,即实数a的取值范围是.(2)证明:由(1)知,即,由,得,所以.要证,只需证,即证,即,也就是.整理得,即证.,则要证.,则所以上单调递增,所以.所以当时,,故原结论成立,.22(1)直线l的参数方程t为参数),转化为普通方程为.由曲线C的极坐标方程为,得根据转化为直角坐标方程为(2)将直线l的参数方程t为参数),代入中,得由根与系数的关系得在直线l上,.24(1)解:当时,的解集为(2)解:存在使得成立,等价于当且仅当时成立,,当且仅当时取等号;所以,则a的取值范围为 

    相关试卷

    四川省邻水实验学校2020-2021学年高一期中考试数学试卷 Word版含答案:

    这是一份四川省邻水实验学校2020-2021学年高一期中考试数学试卷 Word版含答案,共6页。试卷主要包含了已知全集,已知集合,则,设,则,已知,,,则的大小关系是,设函数,则函数的图像可能为, 函数,若实数满足,则等内容,欢迎下载使用。

    2021四川省邻水实验学校高二下学期第一次月考数学(理)试卷含答案:

    这是一份2021四川省邻水实验学校高二下学期第一次月考数学(理)试卷含答案

    2021四川省邻水实验学校高二下学期第二次月考数学(理)试卷含答案:

    这是一份2021四川省邻水实验学校高二下学期第二次月考数学(理)试卷含答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map