北京市朝阳区2020-2021学年高二下学期期末考试数学试题
展开北京市朝阳区2020-2021学年度第二学期期末质量检测
高二年级数学试卷 2021.7
(考试时间120分钟 满分150分)
本试卷分为选择题(共50分)和非选择题(共100分)两部分
第一部分(选择题 共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.
1.设,则“”是“”的
A.充分不必要条件 B. 必要不充分条件
C.充要条件 D. 既不充分也不必要条件
2.展开式中的系数为
A. 20 B. 10 C. 10 D. 20
3.函数在区间上的最大值为
A. B. C. D.
4.袋子里有8个红球和4个黄球,从袋子里有放回地随机抽取4个球,用表示取到红球的个数,则
A. B. C. D.
5.设随机变量服从正态分布,若,,则
A.1 B. 2 C. 3 D. 4
6.从4名高一学生和5名高二学生中,选3人参加社区垃圾分类宣传活动,其中至少有1名高二学生参加宣传活动的不同选法种数为
A. B. C. D.
7.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为;若他第1球投不进,则第2球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为
A. B. C. D.
8.为了研究某校男生的脚长(单位:)和身高(单位:)的关系,从该校随机抽取名男生,根据测量数据的散点图可以看出与之间有线性相关关系.设关于的经验回归方程为.已知,,,该校某男生的脚长为,据此估计其身高为
A. B. C. D.
9.已知.以下四个命题:
①对任意实数,存在,使得;
②对任意,存在实数,使得;
③对任意实数,,均有成立;
④对任意实数,,均有成立.
其中所有正确的命题是
A. ①② B. ②③ C. ①③ D. ②④
10.一个圆的圆周上有8个点,连接任意两点画出弦.如果有一对弦不相交且没有共同的端点,我们称它们为一组“自由弦对”.则此圆上的“自由弦对”总组数为
A.70 B. 140 C. 210 D. 280
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.
11.判断对错,并在相应横线处划“√”或“×”.
①样本相关系数时,称成对数据正相关,时,称成对数据负相关________;
②样本相关系数的绝对值越接近于1,线性相关程度越弱,越接近于0,线性相关程度越强________.
12.已知,则的最小值为______.
13.某单位工会组织75名会员观看《光荣与梦想》、《觉醒年代》、《跨过鸭绿江》三部建党百年优秀电视剧,对这三部剧的观看情况统计如下:
观看情况 | 观看人数 |
只看过《光荣与梦想》 | 12 |
只看过《觉醒年代》 | 11 |
只看过《跨过鸭绿江》 | 8 |
只看过《光荣与梦想》和《觉醒年代》 | 7 |
只看过《光荣与梦想》和《跨过鸭绿江》 | 4 |
只看过《觉醒年代》和《跨过鸭绿江》 | 5 |
同时看过《光荣与梦想》、《觉醒年代》和《跨过鸭绿江》 | 21 |
则会员中看过《跨过鸭绿江》的共有 人,三部电视剧中,看过至少一部的有 人.
14. 为了唤起全民对睡眠重要性的认识,国际精神卫生组织于2001年发起了一项全球性的活动——将每年的3月21日定为“世界睡眠日”.现从某中学初一至高三学生中随机抽取部分学生进行睡眠质量调查,采用睡眠质量指数量表统计结果如下:
性别 | 人数 | 睡眠质量好 | 睡眠质量一般 | 睡眠质量差 |
男 | 220 | 99 | 90 | 31 |
女 | 250 | 50 | 120 | 80 |
合计 | 470 | 149 | 210 | 111 |
假设所有学生睡眠质量的程度是相互独立的.以调查结果的频率估计概率,现从该中学男生和女生中各随机抽取1人,二人中恰有一人睡眠质量好的概率是 .
15.我国南宋数学家杨辉在1261年所著的《详解九章算法》里,出现了图1这张表.杨辉三角的发现比欧洲早500年左右.如图2,杨辉三角的第行的各数就是的展开式的二项式系数.
图1 图2
则第10行共有_________个奇数;第100行共有_________个奇数.
16.函数的定义域为________,极大值点的集合为________.
三、解答题:本大题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.
17.(本小题满分13分)
已知集合,.
(Ⅰ)若,全集,求;
(Ⅱ) 从条件①和条件②选择一个作为已知,求实数的取值范围.
条件①: 若;
条件②: 若.
如果选择条件①、条件②分别解答,则按第一个解答计分.
18.(本小题满分13分)
设函数,,.
(Ⅰ)求的单调递增区间;
(Ⅱ)当,时,求证:
19.(本小题满分14分)
根据国家电影局发布的数据,2020年中国电影总票房为204.17亿,年度票房首度超越北美,成为2020年全球第一大电影市场.国产历史战争题材影片《八佰》和《金刚川》合力贡献了国内全年票房的.我们用简单随机抽样的方法,分别从这两部电影的购票观众中各随机调查了100名观众,得到结果如下:图1是购票观众年龄分布情况;图2是购票观众性别分布情况.
图1
图2
(Ⅰ)设C表示事件:“观看电影《八佰》的观众年龄低于30岁”,根据图1的数据,估计事件C的概率;
(Ⅱ)现从参与调查的电影《金刚川》的100名购票观众中随机抽取两名依次进行电话回访,求在第1次抽到男性观众的条件下,第2次仍抽到男性观众的概率;
(Ⅲ)填写下面的2×2列联表,并根据小概率值的独立性检验,分析男性观众与女性观众对这两部历史战争题材影片的选择是否有差异?
影片 | 女性观众 | 男性观众 | 总计 |
《八佰》 |
|
| 100 |
《金刚川》 |
|
| 100 |
总计 |
|
| 200 |
0.1 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
附:.
20. (本小题满分15分)
某工厂生产的10件产品中,有8件优等产品,2件不合格产品.
(Ⅰ)若从这10件产品中不放回地抽取两次,每次随机抽取一件,求第二次取出的是不合格产品的概率;
(Ⅱ)若从这10件产品中随机抽取3件,设抽到的不合格产品件数为,求的分布列和数学期望;
(Ⅲ)某工作人员在不知情的情况下,从这10件产品中随机抽取了3件产品销售给了下级经销商.现该工厂针对3件已销售产品中可能出现的不合格产品,提出以下两种处理方案:
方案一 将不合格产品返厂再加工,不合格产品的再加工费用为每件200元,所有返厂产品的运输费用为一次性80元;
方案二 将不合格产品就地销毁,每件不合格产品损失成本300元.
若以返厂再加工费用与运输费用之和的期望值为决策依据,要使损失最小,应选择哪种方案处理不合
产品?
21.(本小题满分15分)
已知函数
(Ⅰ)求的极值;
(Ⅱ)已知,且对任意的恒成立,求的最大值;
(Ⅲ)设的零点为,当,且时,
证明:
2022-2023学年北京市朝阳区高二下学期期末质量检测数学试题含答案: 这是一份2022-2023学年北京市朝阳区高二下学期期末质量检测数学试题含答案,共15页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。
2022-2023学年北京市朝阳区高二(下)期末考试数学试卷(含解析): 这是一份2022-2023学年北京市朝阳区高二(下)期末考试数学试卷(含解析),共19页。试卷主要包含了 已知a=lg13,b=30, 已知定义在R上的函数f满足等内容,欢迎下载使用。
2020-2021学年北京市朝阳区高二(下)期末数学试卷: 这是一份2020-2021学年北京市朝阳区高二(下)期末数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。