2022安徽省江淮十校高三上学期第一次联考文科数学试题含答案
展开江淮十校2022届高三第一次联考
数学(文科) 2021.8
注意事项:
1.本试卷满分150分,考试时间120分钟。
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.复数在复平面上对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知集合,,则等于( )
A. B. C. D.
3.已知双曲线C:,则该双曲线的离心率为( )
A. B. C.2 D.4
4.“”是“直线与直线平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.设函数,若,则( )
A. B. C.1 D.2
6.已知两个等比数列,的前n项积分别为,,若,则( )
A.3 B.27 C.81 D.243
7.已知函数,,某函数的部分图象如图所示,则该函数可能是( )
A. B.
C. D.
8.将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再把得到的曲线向左平移个单位长度,得到函数的图象,则图象的一条对称轴方程是( )
A. B. C. D.
9.一个四面体的三视图如图所示,则该四面体的表面积为( )
A. B. C. D.
10.我国古代以天为主,以地为从,天和干相连叫天干,地和支相连叫地支,合起来叫天干地支.天干有十个,就是甲、乙、丙、丁、戊、己、庚、辛、壬、癸,地支有十二个,依次是子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.古人把它们按照甲子、乙丑、丙寅……的顺序而不重复地搭配起来,从甲子到癸亥共六十对,叫做一甲子.我国古人用这六十对干支来表示年、月、日、时的序号,周而复始,不断循环,这就是干支纪年法(即农历).干支纪年历法,是屹立于世界民族之林的科学历法之一.今年(2021年)是辛丑年,也是伟大的中国共产党成立100周年,则中国共产党成立的那一年是( )
A.辛酉年 B.辛戊年 C.壬酉年 D.壬戊年
11.的内角A,B,C的对边分别为a,b,c,若,,则面积的最大值为( )
A. B. C.1 D.2
12.若,恒成立,则a的最大值为( )
A. B.1 C. e D.
二、填空题:本题共4小题,每小题5分,共20分.
13.若x,y满足约束条件,则的最大值为____________.
14.在中,已知点D满足,若,则____________.
15.已知点P为抛物线C:上的动点,过点P作圆M:的一条切线,切点为A,则的最小值为____________.
16.已知正方体的棱长等于1,点为P底面的四条棱上的动点,则的取值范围为____________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.
17.(10分)已知函数.
(1)求的单调递减区间;
(2)设锐角内角A,B,C的对边分别为a,b,c,已知,,求b的取值范围.
18.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对党史的了解,某班级开展党史知识竞赛活动,现把50名学生的成绩绘制了如图所示的频率分布直方图.
(1)求a的值并估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)用分层抽样的方法从成绩在,两组学生中抽取5人进行培训,再从这5人中随机抽取2人参加校级党史知识竞赛,求这2人来自不同小组的概率.
19.(12分)已知数列的前n项和为,满足,(t为常数).
(1)求的通项公式;
(2)若,求数列的前n项和为.
20.(12分)如图,在四棱锥中,,.
(1)在棱上是否存在点E,使得平面?说明理由;
(2)若平面平面,,,求点A到平面的距离.
21.(12分)书籍椭圆E:()的焦点为,,且点在E上.
(1)求E的方程;
(2)已知过定点的动直线l交E于A,B两点,线段的中点为N,若为定值,试求m的值.
22.(12分)已知函数.
(1)讨论的单调性;
(2)若,关于x的方程有唯一解,求a的值.
江淮十校2022届高三第一次联考
数学(文科)试题参考答案与评分细则
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
选项 | A | B | C | C | D | D | C | B | B | A | A | C |
1.A 解:,在复平面上对应的点的坐标为.
2.B 解:∵,∴,∵,∴,∴.
3.C 解:由已知易得.
4.C 解:当两直线平行,∴,解得或,当,两直线重合,舍去;当时,两直线平行.所以“”是“直线与直线平行”的充要条件.
5.D 解:,则,得,解得.
6.D 解:,故选D.
7.C 解:对于A,为非奇非偶函数,与函数图象不符,排除A;对于B,为非奇非偶函数,与函数图象不符,排除B;对于D,,当时,,与图象不符,排除D.故选C.
8.B 解:依题意可知,,令,,解得,.所以时,.
9.B 解:如图,在棱长等于的正方体上取四面体即为所求四面体,易得该四面体的表面积为.
10.A 解:中题意知,天干是公差为10的等差数列,地支为公差为12的等差数列,且,,因为2021年为辛丑年,则100年前的天干为“辛”,地支为“酉”,可得到1921年为辛西年.
11.A 解:
当且仅当时取等号,
∴,∴,则.
12.C 解:因为,,
因为,
①若,,此时满足;
②若,令,在恒成立,
所以在单调递增,
在恒成立,
综上可得在恒成立,,
令,,
在单调递减,单调递增,所以,所以.
二、填空题:本题共4小题,每小题5分,共20分.
13.5
解:在取得最大值5.
14.
解:因为,所以.
15.
解:由已知易得,
设点,则,
当时,取得最小值.
16.
解:不妨令点P在棱上,设,则,由勾股定理可得
,
其几何意义为x轴上一动点()到两定点与的距离之和.其最小值即为到的距离,即.
又由平面几何知识知,当的最大值在或处取得,
当时,;当时,.
故的取值范围为.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.
17.解:(1) ··································································2分
令得() ···································································4分
∴的单调递减区间为() ·······················································5分
(2)由得,
∵,∴,∴ ··································································7分
由正弦定理得,,∵,∴b的取值范围为 ···········································10分
18.解:(1)根据频率分布直方图得:,
解得 ·······································································3分
估计平均成绩为:
··········································································6分
(2)来自小组的有3人记为,,,来自小组的有2人记为,,从5人中随机抽取2人,基本事件为:,,,,,,,,,.
来自不同组的有,,,,,, ····················································9分
所以概率为. ································································12分
19.解:(1)令,,可得,所以
时,,可得
所以(),又因为满足上式,所以 ················································6分
(2)解法一:因为
所以 ······································································12分
解法二:①n为偶数
②n为奇数
所以 ······································································12分
20.解:(1)存在的中点E,使得平面, ··············································1分
证明如下:分别取,的中点E,F,连接,,,则,
又∵,∴,∵,,∴,
∴四边形为平行四边形,∴,
又∵平面,平面,∴平面. ·······················································5分
(2)取的中点O,连接,,∴,∴,
又∵平面平面,平面平面,
平面,∴平面, ······························································7分
设点A到平面的距离为d,则,∴.
∵平面,∴,,,∴,
易知,∴,,,
∴,,
∴,∴,
即点A到平面的距离为. ························································12分
21.解:(1)易知,∴,而,
∴,∴椭圆E的方程为. ·························································4分
(2)①若直线l的斜率不存在,易得, ·············································5分
②若直线l的斜率存在,设其方程为,,,
则,联立得
,
且,, ·····································································7分
··········································································8分
··········································································10分
要使上式为常数,必须且只需,即,
此时易知恒成立,且,符合题意. ················································11分
综上所述,. ································································12分
22.解:(1)由题意,可得且
①若,恒成立,则在上是增函数
②,则
所以当时,,当时,
则在上是减函数,在上是增函数
综上所述,若,在上是增函数
若,在上是减函数,在上是增函数 ················································5分
(2)中题意,可得
令,
方程有唯一解,即有唯一零点;
,
令,得.
因为,,所以(舍去),.
当时,,在是减函数;
当时,,在上是增函数.
当时,,.
若,则恒成立,不存在零点(舍) ················································7分
若
则,即,可得
设,因为在时,是减函数,所以至多有一解.
又因为,所以,从而解得. ·······················································9分
若,则,可得
因为,
所以在存在一个零点;
又因为
所以在存在一个零点;
因此存在两个零点(舍). ······················································11分
综上所述,. ································································12分
2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案: 这是一份2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案,共13页。
2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案: 这是一份2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案,共13页。
2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案: 这是一份2022安徽省江淮十校高三上学期第一次联考理科数学试题含答案,共13页。