2022湖北省云学新高考联盟学校高一下学期5月联考数学试题(含答案)
展开2022年湖北云学新高考联盟学校高一年级5月联考
数学试卷
命题学校:洪湖一中 命题人:路明琴 审题人:洪湖一中 杨前军 嘉鱼一中 甘业明、郑世波
考试时间:2022年5月30日09:50—11:50
一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.下列命题正确的是( )
A.有两个面平行,其余各面都是平行四边形的几何体是棱柱
B.有一个面是平面多边形,其余各面都是三角形的几何体是棱锥
C.等腰梯形绕它上、下底边中点的连线旋转180°可以得到一个圆台
D.在圆柱的上、下底面的圆周上各取一个点,则这两点的连线是圆柱的母线
2.已知向量,,且,则( )
A.6 B. C. D.
3.设,为两个不同的平面,则的一个充分条件是( )
A.内有无数条直线与平行 B.,平行于同一个平面
C.,平行于同一条直线 D.,垂直于同一个平面
4.顺次连接点,,,所构成的图形是( )
A.等腰梯形 B.平行四边形 C.菱形 D.矩形
5.设,,,则a,b,c大小关系正确的是( )
A. B. C. D.
6.设函数,若,,则函数的零点个数为( )
A.1 B.2 C.3 D.4
7.在中,设,则动点M的轨迹必通过的( )
A.外心 B.内心 C.重心 D.垂心
8.已知四面体的所有棱长均为2,M,N分别为棱,的中点,F为棱上异于A,B的动点.有下列结论:
①线段的长度为;
②若点G为线段上的动点,则无论点F与G如何运动,直线与直线都是异面直线;
③异面直线和所成的角为;
④的最小值为2.
其中正确的结论为( )
A.①③④ B.②③ C.②③④ D.①④
二、选择题(本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)
9.已知i为虚数单位,以下四个说法中正确的是( )
A.
B.
C.若,则复平面内对应的点位于第二象限
D.已知复数z满足,则z在复平面内对应的点的轨迹为直线
10.已知向量,(),则下列命题正确的是( )
A.若,则
B.存在,使得
C.若向量在方向上的投影向量为,则向量与的夹角为
D.与向量共线的单位向量是
11.已知正方体的棱长为1,下面选项正确的是( )
A.直线与平面不垂直 B.四面体的体积为
C.异面直线与直线所成角的为 D.直线与平面所成的角为
12.已知正四棱台,下底面边长为4,上底面边长为2,侧棱长为2,则( )
A.它的表面积是 B.它的外接球球心在该四棱台的内部
C.侧棱与下底面所成的角为 D.它的体积比半径为的球的体积小
三、填空题(本大题共4小题,每小题5分,共20分)
13.已知虚数z的实部不为0,模为2,则符合要求的一个虚数_______________.
14.已知四棱锥中,侧棱平面,底面是矩形,则该四棱锥的4个侧面中直角三角形的个数是______________.
15.如图,矩形是水平放置的一个平面图形由斜二测画法得到的直观图,其中,,则原四边形的周长是
16.已知一圆锥底面直径是,圆锥的高是,在该圆锥内放置一个棱长为a的正四面体,且正四面体可以在该圆锥内任意转动,则a的最大值为_____________.
四、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.(本小题满分10分)
平行四边形中,点M在上,且,点N在上,且,记,
(1)以,为基底表示;
(2)求证:M、N、C三点共线.
18.(本小题满分12分)
已知关于x的不等式的解集为().
(1)求a,b的值;
(2)当,,且满足时,有恒成立,求k的取值范围.
19.(本小题满分12分)
某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x(,)台,若年产量不足70台,则每台设备的额外成本为万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.
(1)写出年利润W(万元)关于年产量x(台)的关系式;
(2)当年产量为多少台时,年利润最大,最大值为多少?
20.(本小题满分12分)
设函数.
(Ⅰ)求函数的周期及图象的对称轴;
(Ⅱ)在锐角中,若,且能盖住的最小圆的面积为,求的取值范围.
21.(本小题满分12分)
已知四棱锥的底面是菱形,平面,,,F,G分别为,中点,.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积;
(Ⅲ)求证:与不垂直.
22.(本小题满分12分)
对于函数,若在定义域内存在实数x,满足,则称为“局部奇函数”.
(1)已知二次函数(),试判断是否为“局部奇函数”,并说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数m的取值范围;
(3)若为定义在R上的“局部奇函数”,求实数m的取值范围.
2022年湖北云学新高考联盟学校高一年级5月联考
数学评分细则
一、单选题
1.C 2.D 3.B 4.B 5.C 6.B 7.A 8.A
二、多选题
9.BD 10.AC 11.BCD 12.AD
三、填空题
13.(答案不唯一) 14.4 15. 16.4
四、解答题
17.(1)解:
;······································································5分
(2)证明:∵Mb,
,
∴,
∴
且与有公共点M,
所以M、N、C三点共线.····················································10分
18.解:(1)因为不等式的解集为(),
所以1和a是方程的两个实数根且,··············································2分
所以,解得.·······························································4分
(2)由(1)知,且,
故,····································································7分
当且仅当,即时,等号成立.··················································8分
依题意有,即,
得,···································································11分
所以k的取值范围为.························································12分
19.解:(1)当,时,
;······································································3分
当,时,
.
∴.······································································6分
(2)①当,时,
,
∴当时,y取得最大值,最大值为1200万元.·······································8分
②当,时,
,·····································································10分
当且仅当,即时,y取得最大值1320,··········································11分
∵,
∴当年产量为80台时,年利润最大,最大值为1320万元.····························12分
20.解:(Ⅰ)因为
,······································································2分
所以函数的周期····························································3分
令(),解得()
所以函数的周期是,对称轴方程是().·········································5分
(Ⅱ)因为,所以.
又因为为锐角三角形,所以,.
所以,故有.·······························································6分
已知能盖住的最小圆为的外接圆,而其面积为,设半径为。
所以,得,·······························································7分
的角A,B,C所对的边分别为a,b,c.
由正弦定理.
所以,,
,······································································9分
因为为锐角三角形,所以.···················································10
所以,则,
故,···································································11分
所以的取值范围是.·························································12分
21.(Ⅰ)证明:如图,连接,,
∵O是中点,F是中点,∴,
平面,平面,则平面.
∵O是中点,G是中点,∴,
平面,平面,则平面.
又,,平面,
∴平面平面,又平面,
则平面.··································································4分
(注:也可构造线线平行证明.)
(Ⅱ)解:∵底面,底面,∴,
又四边形为菱形,∴,
又,、平面,
∴平面,且,·····························································6分
而F为的中点,
∴;····································································8分
(Ⅲ)证明:假设,
又,且,,平面,
∴平面,而平面,
则,与矛盾.
∴假设错误,故与不垂直.···················································12分
22.解:为“局部奇函数”等价于关于x的方程有解.
(1)当()时,方程,
即有解,而,所以,从而为“局部奇函数”.······································2分
(2)当时,可化为.·························································3分
因为的定义域为,所以方程在上有解.
令,则,上式化为.·························································4分
设,则在上为单调减函数;在上为单调增函数.
因为,,,
所以时,.
所以,即.································································7分
(3)当时,······························································8分
可化为.
设,则,则,
从而只需要关于t的方程在上有解即可.···········································9分
令.
① 当时,在上有解,
由,即,解得;
② 当时,在上有解等价于
,解得.·································································11分
(注:也可转化为大根不小于2求解)
综上,所求实数m的取值范围为.···············································12分
2022-2023学年湖北省云学新高考联盟学校高一下学期5月联考数学试题含答案: 这是一份2022-2023学年湖北省云学新高考联盟学校高一下学期5月联考数学试题含答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。
湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案: 这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共8页。试卷主要包含了下列各式中,值是的是等内容,欢迎下载使用。
湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案: 这是一份湖北省云学新高考联盟学校2022-2023学年高一下学期5月联考数学试题及答案,共7页。