04解答题-四川省泸州市五年(2018-2022)中考数学真题分类汇编
展开
这是一份04解答题-四川省泸州市五年(2018-2022)中考数学真题分类汇编,共15页。试卷主要包含了0+2﹣1+cs45°﹣|﹣|,+2cs30°,﹣1,2﹣×sin30°,﹣1﹣|﹣4|等内容,欢迎下载使用。
04解答题-四川省泸州市五年(2018-2022)中考数学真题分类汇编一.实数的运算(共5小题)1.(2022•泸州)计算:()0+2﹣1+cos45°﹣|﹣|.2.(2021•泸州)计算:()0+()﹣1﹣(﹣4)+2cos30°.3.(2020•泸州)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.4.(2019•泸州)计算:(π+1)0+(﹣2)2﹣×sin30°.5.(2018•泸州)计算:π0++()﹣1﹣|﹣4|.二.分式的混合运算(共5小题)6.(2022•泸州)化简:(+1)÷.7.(2021•泸州)化简:(a+)÷.8.(2020•泸州)化简:(+1)÷.9.(2019•泸州)化简:(m+2+)•.10.(2018•泸州)化简:(1+)÷.三.一元一次方程的应用(共1小题)11.(2020•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?四.二元一次方程组的应用(共2小题)12.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.13.(2019•泸州)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.一元一次不等式的应用(共1小题)14.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?六.一元一次不等式组的应用(共1小题)15.(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?七.反比例函数与一次函数的交点问题(共4小题)16.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.(1)求一次函数的解析式;(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.17.(2020•泸州)如图,在平面直角坐标系xOy中,已知一次函数y=x+b的图象与反比例函数y=的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.18.(2019•泸州)一次函数y=kx+b的图象经过点A(1,4),B(﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y=的图象相交于C(x1,y1),D(x2,y2)两点,且3x1=﹣2x2,求m的值.19.(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.八.反比例函数综合题(共1小题)20.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.
参考答案与试题解析一.实数的运算(共5小题)1.(2022•泸州)计算:()0+2﹣1+cos45°﹣|﹣|.【解答】解:原式=1++×﹣=1++1﹣=1+1=2.2.(2021•泸州)计算:()0+()﹣1﹣(﹣4)+2cos30°.【解答】解:()0+()﹣1﹣(﹣4)+2cos30°.=1+4+4+3=12.3.(2020•泸州)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.【解答】解:原式=5﹣1+2×+3=5﹣1+1+3=8.4.(2019•泸州)计算:(π+1)0+(﹣2)2﹣×sin30°.【解答】解:原式=1+4﹣2×=1+4﹣1=4.5.(2018•泸州)计算:π0++()﹣1﹣|﹣4|.【解答】解:原式=1+4+2﹣4=3.二.分式的混合运算(共5小题)6.(2022•泸州)化简:(+1)÷.【解答】解:原式====.7.(2021•泸州)化简:(a+)÷.【解答】解:原式=(+)÷=•=•=a﹣1.8.(2020•泸州)化简:(+1)÷.【解答】解:原式=.9.(2019•泸州)化简:(m+2+)•.【解答】解:原式=•=•=m+110.(2018•泸州)化简:(1+)÷.【解答】解:原式=•=.三.一元一次方程的应用(共1小题)11.(2020•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件; (2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得 30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.四.二元一次方程组的应用(共2小题)12.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.【解答】解:(1)设1辆A货车一次可以运货x吨,1辆B货车一次可以运货y吨,根据题意得:,解得:,答:1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨;(2)方法一:设A货车运输m吨,则B货车运输(190﹣m)吨,设总费用为w元,则:w=500×+400×=25m+=25m﹣m+=﹣m+,∵﹣<0,∴w随m的增大而减小.∵A、B两种货车均满载,∴,都是大于或等于0的整数,∴0≤m≤190,当m=20时,不是整数;当m=40时,=10;当m=60时,不是整数;当m=80时,不是整数;当m=100时,=6;当m=120时,不是整数;当m=140时,不是整数;当m=160时,=2;当m=180时,不是整数;故符合题意的运输方案有三种:①A货车40÷20=2辆,B货车10辆;②A货车100÷20=5辆,B货车6辆;③A货车160÷20=8辆,B货车2辆;∵w随m的增大而减小,∴费用越少,m越大,故方案③费用最少.方法二:设安排m辆A货车,则安排辆B货车,w=500m+400×=﹣m+,∵=9.5,∴0<m<10,∵m,都为整数,∴m=2,5,8,故符合题意的运输方案有三种:①A货车2辆,B货车10辆;②A货车5辆,B货车6辆;③A货车8辆,B货车2辆;∵﹣<0.∴w随m的增大而减小,∴费用越少,m越大,故方案③费用最少.13.(2019•泸州)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.【解答】解:(1)设A型汽车每辆的价格为x万元,B型汽车每辆的价格为y万元,依题意,得:,解得,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元; (2)设购进A型汽车m辆,购进B型汽车(10﹣m)辆,根据题意得:解得:3≤m<5,∵m是整数,∴m=3或4,当m=3时,该方案所用费用为:25×3+30×7=285(万元);当m=4时,该方案所用费用为:25×4+30×6=280(万元).答:最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.五.一元一次不等式的应用(共1小题)14.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元; (2)设购买甲图书本数为a,则购买乙图书的本数为:2a+8,故50a+20(2a+8)≤1060,解得:a≤10,故2a+8≤28,答:该图书馆最多可以购买28本乙图书.六.一元一次不等式组的应用(共1小题)15.(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.七.反比例函数与一次函数的交点问题(共4小题)16.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.(1)求一次函数的解析式;(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.【解答】解:(1)∵反比例函数y=的图象过点A(2,3),点B(6,n),∴m=2×3=6,m=6n,∴y=,n=1,∴一次函数y=kx+b(k≠0)的图象过点A(2,3),点B(6,1),∴,解得:,∴一次函数的解析式为:y=﹣x+4;(2)∵直线AB沿y轴向下平移8个单位后得到直线l,∴直线l的解析式为:y=﹣x+4﹣8=﹣x﹣4,当x=0时,y=﹣4,当y=0时,x=﹣8,∴M(﹣8,0),N(0,﹣4),∴OM=8,ON=4,∴MN===4,联立,得:﹣x﹣4=,解得:x1=﹣2,x2=﹣6,将x1=﹣2,x2=﹣6代入y=得:y1=﹣3,y2=﹣1,经检验:和都是原方程组的解,∴P(﹣6,﹣1),Q(﹣2,﹣3),如图,过点P作x轴的平行线,过点Q作y轴的平行线,两条平行线交于点C,则∠C=90°,C(﹣2,﹣1),∴PC=﹣2﹣(﹣6)=4,CQ=﹣1﹣(﹣3)=2,∴PQ===2,∴==.17.(2020•泸州)如图,在平面直角坐标系xOy中,已知一次函数y=x+b的图象与反比例函数y=的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)如图,∵点A(a,6)在反比例函数y=的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y=x+b中得:=6,∴b=3,∴该一次函数的解析式为:y=x+3;(2)由得:,,∴B(﹣4,﹣3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO==9.18.(2019•泸州)一次函数y=kx+b的图象经过点A(1,4),B(﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y=的图象相交于C(x1,y1),D(x2,y2)两点,且3x1=﹣2x2,求m的值.【解答】解:(1)由题意得:解得:∴一次函数解析式为:y=2x+2;(2)联立,消去y得:2x2+2x﹣m=0,则x1+x2=﹣1,因为3x1=﹣2x2,解得,∴C(2,6),∵反比例函数y=的图象经过C点,∴m=2×6=12.19.(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B∵点C(x1,y1),D(x2,y2),∴x1•y1=m,由(1)点E坐标为(0,9),则AE=9﹣y1,∵AC∥BD,CD=CE,∴BD=2x1,EB=2(9﹣y1),∴OB=9﹣2(9﹣y1)=2y1﹣9,∴点D坐标为(2x1,2y1﹣9),∴2x1•(2y1﹣9)=m,整理得m=6x1,∵x1•y1=m,∴y1=6,则点D坐标化为(2x1,3),∵点D在y=﹣图象上∴x1=2∴m=x1•y1=12.八.反比例函数综合题(共1小题)20.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,∴点A(2,6),∵直线y=﹣x+b经过点A,∴6=﹣×2+b,∴b=9;(2)如图,设直线AB与x轴的交点为D,设点C(a,0),∵直线AB与x轴的交点为D,∴点D(6,0),由题意可得:,∴,,∴点B(4,3),∵S△ACB=S△ACD﹣S△BCD,∴3=×CD×(6﹣3),∴CD=2,∴点C(4,0)或(8,0).
相关试卷
这是一份04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共16页。试卷主要包含了容易题,基础题等内容,欢迎下载使用。
这是一份04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共21页。试卷主要包含了解不等式组等内容,欢迎下载使用。
这是一份04解答题(基础题)-四川省达州市五年(2018-2022)中考数学真题分类汇编(共25题),共41页。试卷主要包含了0+2sin60°﹣|1﹣|,0+,﹣2+﹣,,其中a=﹣1,÷的值,其中x=+1,化简代数式等内容,欢迎下载使用。