初中数学第22章 相似形22.1 比例线段图片ppt课件
展开1. 了解平行线分线段成比例的基本事实及其推论;(重点)2. 会用平行线分线段成比例及其推论解决相关问题.(难点)
下图是一架梯子的示意图,由生活常识可以知道:AD,BE,CF 互相平行,且若 AB = BC,你能猜想出什么结果呢?
如图①,小方格的边长都是 1,直线 a∥b∥c,分别交直线 m,n 于A1,A2,A3,B1,B2,B3.
(2) 将 b 向下平移到如图②的位置,直线 m,n 与直线 b 的交点分别为 A2,B2. 你在问题 (1) 中发现的结 论还成立吗?如果将 b 平移到其他位置呢?
(3) 根据前两问,你认为在平面上任意作三条平行线, 用它们截两条直线,截得的对应线段成比例吗?
一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.
若a∥b∥ c ,则 , ,
如图,已知 l1∥l2∥l3,下列比例式中错误的是( ) A. B. C. D.
如图,直线 a∥b∥c,由平行线分线段成比例的基本事实,我们可以得出图中哪些对应成比例的线段?
把直线 n 向左或向右任意平移,这些线段依然成比例吗?
直线 n 向左平移到 B1 与 A1 重合的位置,说说图中有哪些成比例线段?
把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?
直线 n 向左平移到 B2 与 A2 重合的位置,说说图中有哪些成比例线段?
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.
如图,DE∥BC, ,则 ;FG∥BC, ,则 .
例1 如图,在△ABC中, .求证:(1)
如图,DE∥BC,AD = 4,DB = 6,AE = 3,则AC = ;FG∥BC,AF = 4.5,则 AG = .
例2 如图:在 △ABC 中,点 D、E、F 分别在边AB、AC、BC 上,且 DE//BC、EF//AB.若 AD = 2BD.
(1)求证: (2)求 的值.
解:∵DE//BC,EF//AB
1. 如图,在 △ABC 中,EF∥BC,AE = 2 cm,BE = 6 cm,BC = 4 cm,EF 长 ( )
A. 1 cm B. cm C. 3 cm D. 2 cm
则 .
3.在△ABC中,ED//AB,若 ,则 , .
4. 如图,已知菱形 ABCD 内接于 △AEF,AE = 5 cm,AF = 4 cm,求菱形的边长.
解:∵ 四边形 ABCD 为菱形,
设菱形的边长为 x cm,则 CD = AD = x cm,DF = (4-x) cm,
5.如图,AB = AC,AD⊥BC 于点 D,M 是AD 的中点,CM 交 AB 于点 P,DN∥CP.(1)若 AB = 6 cm,求 AP 的长;(2)若 PM = 1 cm,求 PC 的长.
解:(1)∵AB = AC,AD⊥BC 于点 D,M 是 AD 的中点,∴DB = DC,AM = MD.∵DN ∥CP,
又∵AB = 6 cm,
∴AP = 2 cm.
(2)若 PM = 1 cm,求 PC 的长.
又∵PM = 1 cm,
∴PC = 2ND = 4PM = 4 cm.
解:由(1)知 AP = PN =NB,
初中数学沪科版九年级上册22.1 比例线段教学课件ppt: 这是一份初中数学沪科版九年级上册<a href="/sx/tb_c44092_t3/?tag_id=26" target="_blank">22.1 比例线段教学课件ppt</a>,共14页。PPT课件主要包含了知识要点,新知导入,课程讲授,成比例,随堂练习等内容,欢迎下载使用。
初中数学沪科版九年级上册22.1 比例线段优质课件ppt: 这是一份初中数学沪科版九年级上册22.1 比例线段优质课件ppt,共25页。PPT课件主要包含了学习目标及重难点,课程导入,由此得到如下结论,平行线等分线段定理,几何语言,且ABBC,两条直线被,对应线段是指,可简记为,所得的对应线段等内容,欢迎下载使用。
初中数学沪科版九年级上册22.1 比例线段习题ppt课件: 这是一份初中数学沪科版九年级上册22.1 比例线段习题ppt课件,共28页。PPT课件主要包含了成比例等内容,欢迎下载使用。