初中数学沪科版九年级上册23.2解直角三角形及其应用第1课时教案设计
展开
这是一份初中数学沪科版九年级上册23.2解直角三角形及其应用第1课时教案设计,共5页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。
第1课时 解直角三角形
教学目标
【知识与技能】
在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.
【过程与方法】
通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
【情感、态度与价值观】
在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习激情,增强学好数学的信心.
重点难点
【重点】
直角三角形的解法.
【难点】
灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.
、教学过程
一、复习回顾
师:你还记得勾股定理的内容吗?
生:记得.
学生叙述勾股定理的内容.
师:直角三角形的两个锐角之间有什么关系呢?
生:两锐角互余.
师:直角三角形中,30°的角所对的直角边与斜边有什么关系?
生:30°的角所对的直角边等于斜边的一半.
师:很好!
二、共同探究,获取新知
1.概念.
师:由sinA=,你能得到哪些公式?
生甲:a=c·sinA.
生乙:c=.
师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.这些公式有一个共同的特点,就是式子的右端至少有一条边,为什么会是这样的呢?
学生思考.
生:因为左边的也是边,根据右边边与角的关系计算出来的应是长度.
师:对!解三角形就是由已知的一些边或角求另一些边和角,我们现在看看解直角三角形的概念.
教师板书:
在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形.
2.练习
教师多媒体课件出示:
(1)如图(1)和(2),根据图中的数据解直角三角形;
师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢?
生1:根据cs60°=,得到AB=,然后把AC边的长和60°角的余弦值代入,求出AB边的长,再用勾股定理求出BC边的长,∠B的度数根据直角三角形两锐角互余即可得到.
生2:先用直角三角形两锐角互余得到∠B为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB的值,再由sin60°=得到BC=AB·sin60°,从而得到BC边的长.
师:你们回答得都对!还有没有其他的方法了?
生3:可以求出AB后用AB的值和∠B的余弦求BC的长.
生4:可以在求出AB后不用三角函数,用勾股定理求出BC.
师:同学们说出这几种做法都是对的.下面请同学们看图(2),并解这个直角三角形.
学生思考,计算.
师:这两个题目中已经给出了图形,现在我们再看几道题.
教师多媒体课件出示:
【例1】 在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形.
师:你怎样解答这道题呢?先做什么?
生:先画出图形.
师:很好!现在请同学们画出大致图形.
学生画图.
教师找一生说说解这个直角三角形的思路,然后让同学们自己做,最后集体订下.
解: ∠A=90°-42°6'=47°54'.
由csB=,得
a=ccsB=287.4×0.7420≈213.3.
由sinB=得
b=csinB=287.4×0.6704≈192.7.
教师多媒体课件出示:
【例2】 在△ABC中,∠A=55°,b=20 cm,c=30 cm.求△ABC的面积S△ABC.(精确到0.1 cm2)
师:这道题是已知了三角形的两条边和一个角,求三角形的面积.要先怎样?
学生思考.
生:先画出图形.
师:对,题中没有已知图形时,一般都要自己画出图形.然后呢?你能给出解这道题的思路吗?
生1:先计算AB边上的高,以AB为底,AB边上的高为三角形的高,根据三角形的面积公式,就能计算出这个三角形的面积了.
生2:还可以先计算AC边上的高,然后用三角形的面积公式计算这个三角形的面积.
师:很好!我们现在讨论以AB为底时求三角形面积的方法,怎样求AB边上的高呢?
教师找一生回答,然后集体订正.
解:如图,作AB上的高CD.
在Rt△ACD中,CD=AC·sinA=bsinA,
∴S△ABC=AB·CD=bcsinA.
当∠A=55°,b=20 cm,c=30 cm时,有
S△ABC=bcsinA=×20×30sin55°
=×20×30×0.8192
≈245.8(cm2).
教师多媒体课件出示:
【例3】 如图,东西两炮台A、B相距2 000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离.(精确到1米)
师:这是一个与解直角三角形有关的实际问题,你能将它转化为数学模型吗?
学生思考后回答:会.
师:这相当于已知了哪些条件,让你求什么量?
生:已知直角三角形的一个锐角和一条直角边,求它的斜边和另一直角边.
师:你回答得很好!现在请同学们计算一下.
学生计算,教师巡视指导,最后集体订正.
解:在Rt△ABC中,
∵∠CAB=90°-∠DAC=50°,=tan∠CAB,
∴BC=AB·tan∠CAB=2 000×tan50°≈2 384(米)
又∵=cs50°,
∴AC==≈3 111(米).
答:敌舰与A、B两炮台的距离分别约为3 111米和2 384米.
三、练习新知
师:现在请同学们看课本第125页练习1的第(1)、(2)题.
教师找两生各板演1题,其余同学在下面做,然后集体订正.
解:(1)
∠A=90°-80°=10°,
AB=≈≈172.81,
AC=≈≈170.16,
(2)
BC===≈7.42.
csA===0.375,
∠A≈67.976°≈67°58'32″,
∠B=90°-∠A=22°1'28″.
教师找一生板演课本第125页练习的第3题,其余同学在下面做,然后集体订正.
解:
过点A向DC作垂线,与DC交于一点E.
AE=ADsin43°
=6×sin43°
≈6×0.682
=4.092.
S=(AB+DC)×AE
=(4+8)×4.092
≈24.55.
答:梯形的面积为24.55.
四、巩固提高
师:同学们,通过刚才的学习,相信大家都掌握了一定的解直角三角形及其应用题的方法,现在我出几道习题来检测下大家学得怎么样!
教师多媒体课件出示习题:
1.在△ABC中,∠C=90°,下列各式中不正确的是( )
A.b=a·tanB B.a=b·csA
C.c=D.c=
【答案】B
2.在Rt△ABC中,∠C=90°,a=35,b=28,则tanA= ,tanB= .
【答案】
3.在Rt△ABC中,∠C=90°,c=10,b=5,则∠A= ,S△ABC= .
【答案】30°
4.已知在Rt△ABC中,∠C=90°,a=104,b=20.49,求∠A和∠B.(可利用计算器进行运算,精确到1°)
【答案】∠A=79°,∠B=11°
5.如图,在Rt△ABC中,BC=7.85,AB=11.40,解这个直角三角形.(边长保留三个有效数字,角度精确到1°)
【答案】AC=8.27,∠A=44°,∠B=46°
五、课堂小结
师:本节课,我们学习了什么内容?
学生回答.
师:你还有什么不懂的地方吗?
学生提问,教师解答.
教学反思
本节课在教学过程中,能灵活处理教材,敢于放手让学生通过自主学习、合作探究,达到理解并掌握知识的目的,并能运用知识解决问题.在本章开头,我带领学生复习了与解直角三角形有关的知识点,使学生在解决问题时能想到并能熟练运用.在解有特殊角的三角形时有不止一种解法,我鼓励学生勇于发言,给了他们展示自我的机会,锻炼他们表达自己想法的能力,并且增强了他们的自信心.
相关教案
这是一份初中数学沪科版九年级上册23.2解直角三角形及其应用公开课第1课时教案,共4页。教案主要包含了解直角三角形类型与解法,通过构造作图解直角三角形等内容,欢迎下载使用。
这是一份数学23.2解直角三角形及其应用优秀第2课时教学设计及反思,共5页。教案主要包含了仰角与俯角的定义,方位角等内容,欢迎下载使用。
这是一份初中数学沪科版九年级上册23.2解直角三角形及其应用第4课时教案,共4页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。