终身会员
搜索
    上传资料 赚现金

    04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)

    立即下载
    加入资料篮
    04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)第1页
    04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)第2页
    04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)

    展开

    这是一份04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题),共35页。试卷主要包含了﹣1,,其中x=﹣1,2,其中x=﹣1,÷,其中x=+1,x+k2+k=0,=0等内容,欢迎下载使用。


    04解答题-四川省南充市五年(2018-2022)中考数学真题分类汇编
    一.实数的运算(共1小题)
    1.(2018•南充)计算:﹣(1﹣)0+sin45°+()﹣1
    二.整式的混合运算—化简求值(共2小题)
    2.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.
    3.(2021•南充)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
    三.分式的化简求值(共1小题)
    4.(2020•南充)先化简,再求值:(﹣1)÷,其中x=+1.
    四.二次根式的混合运算(共1小题)
    5.(2019•南充)计算:(1﹣π)0+|﹣|﹣+()﹣1.
    五.一元一次方程的应用(共1小题)
    6.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)
    种类
    真丝衬衣
    真丝围巾
    进价(元/件)
    a
    80
    售价(元/件)
    300
    100
    (1)求真丝衬衣进价a的值.
    (2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?
    (3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?
    六.解一元二次方程-因式分解法(共1小题)
    7.(2021•南充)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
    (1)求证:无论k取何值,方程都有两个不相等的实数根.
    (2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
    七.根与系数的关系(共4小题)
    8.(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.
    (1)求实数k的取值范围.
    (2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.
    9.(2020•南充)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.
    (1)求k的取值范围.
    (2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.
    10.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
    (1)求证:方程有两个不相等的实数根.
    (2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
    11.(2019•南充)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.
    (1)求实数m的取值范围;
    (2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.
    八.一次函数的应用(共1小题)
    12.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
    (1)求一件A型、B型丝绸的进价分别为多少元?
    (2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
    ①求m的取值范围.
    ②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
    九.反比例函数与一次函数的交点问题(共5小题)
    13.(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.
    (1)求直线AB与双曲线的解析式.
    (2)求△ABC的面积.

    14.(2021•南充)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
    (1)求直线AB和反比例函数的解析式;
    (2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.

    15.(2020•南充)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.
    (1)求反比例函数的解析式.
    (2)求四边形OCDB的面积.

    16.(2019•南充)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.
    (1)求k与b的值;
    (2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.

    17.(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
    (1)求直线与双曲线的解析式.
    (2)点P在x轴上,如果S△ABP=3,求点P的坐标.

    一十.二次函数的应用(共3小题)
    18.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
    (1)求苹果的进价;
    (2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
    (3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
    19.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
    (1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
    (2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)

    20.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
    (1)钢笔、笔记本的单价分别为多少元?
    (2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
    一十一.二次函数综合题(共5小题)
    21.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
    (1)求抛物线的解析式.
    (2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
    (3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.


    22.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
    (1)求抛物线的解析式;
    (2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
    (3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.

    23.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
    (1)求二次函数的解析式.
    (2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.

    24.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.
    (1)求抛物线的解析式;
    (2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
    (3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.
    ①求DE的最大值;
    ②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.

    25.(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
    (1)求抛物线的解析式.
    (2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.
    (3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.


    参考答案与试题解析
    一.实数的运算(共1小题)
    1.(2018•南充)计算:﹣(1﹣)0+sin45°+()﹣1
    【解答】解:原式=﹣1﹣1++2
    =.
    二.整式的混合运算—化简求值(共2小题)
    2.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.
    【解答】解:原式=(x+2)(3x﹣2﹣2x)
    =(x+2)(x﹣2)
    =x2﹣4,
    当x=﹣1时,
    原式=(﹣1)2﹣4=﹣2.
    3.(2021•南充)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
    【解答】解:原式=4x2﹣1﹣(4x2﹣12x+9)
    =4x2﹣1﹣4x2+12x﹣9
    =12x﹣10.
    ∵x=﹣1,
    ∴12x﹣10=12×(﹣1)﹣10=﹣22.
    三.分式的化简求值(共1小题)
    4.(2020•南充)先化简,再求值:(﹣1)÷,其中x=+1.
    【解答】解:(﹣1)÷



    =,
    当x=+1时,原式==﹣.
    四.二次根式的混合运算(共1小题)
    5.(2019•南充)计算:(1﹣π)0+|﹣|﹣+()﹣1.
    【解答】解:原式=1+.
    五.一元一次方程的应用(共1小题)
    6.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)
    种类
    真丝衬衣
    真丝围巾
    进价(元/件)
    a
    80
    售价(元/件)
    300
    100
    (1)求真丝衬衣进价a的值.
    (2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?
    (3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?
    【解答】解:(1)依题意得:50a+80×25=15000,
    解得:a=260.
    答:a的值为260.
    (2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,
    依题意得:300﹣x≥2x,
    解得:x≤100.
    设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.
    ∵20>0,
    ∴w随x的增大而增大,
    ∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.
    答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.
    (3)设每件真丝围巾降价y元,
    依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,
    解得:y≤8.
    答:每件真丝围巾最多降价8元.
    六.解一元二次方程-因式分解法(共1小题)
    7.(2021•南充)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
    (1)求证:无论k取何值,方程都有两个不相等的实数根.
    (2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
    【解答】(1)证明:∵Δ=[﹣(2k+1)]2﹣4×(k2+k)=1>0,
    ∴无论k取何值,方程有两个不相等的实数根.
    (2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,
    解得:x=k或x=k+1.
    ∴一元二次方程x2﹣(2k+1)x+k2+k=0的两根为k,k+1,
    ∴或,
    如果1+为整数,则k为1的约数,
    ∴k=±1,
    如果1﹣为整数,则k+1为1的约数,
    ∴k+1=±1,
    则k为0或﹣2.
    ∴整数k的所有可能的值为±1,0或﹣2.
    七.根与系数的关系(共4小题)
    8.(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.
    (1)求实数k的取值范围.
    (2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.
    【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,
    ∴Δ=32﹣4×1×(k﹣2)≥0,
    解得k≤,
    即k的取值范围是k≤;
    (2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,
    ∴x1+x1=﹣3,x1x2=k﹣2,
    ∵(x1+1)(x2+1)=﹣1,
    ∴x1x2+(x1+x2)+1=﹣1,
    ∴k﹣2+(﹣3)+1=﹣1,
    解得k=3,
    即k的值是3.
    9.(2020•南充)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.
    (1)求k的取值范围.
    (2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.
    【解答】解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,
    ∴Δ=(﹣2)2﹣4×1×(k+2)≥0,
    解得:k≤﹣1,
    ∴k的取值范围为k≤﹣1.
    (2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,
    ∴x1+x2=2,x1x2=k+2.
    ∵+=k﹣2,
    ∴==k﹣2,
    ∵k2﹣4=2,
    ∴k2﹣6=0,
    解得:k1=﹣,k2=,
    经检验,k1=﹣,k2=均为原方程的解,k2=不符合题意,舍去,
    ∴k=﹣.
    ∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.
    10.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
    (1)求证:方程有两个不相等的实数根.
    (2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
    【解答】解:(1)由题意可知:Δ=(2m﹣2)2﹣4(m2﹣2m)
    =4>0,
    ∴方程有两个不相等的实数根.
    (2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,
    ∴+=(x1+x2)2﹣2x1x2=10,
    ∴(2m﹣2)2﹣2(m2﹣2m)=10,
    ∴m2﹣2m﹣3=0,
    ∴m=﹣1或m=3
    11.(2019•南充)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.
    (1)求实数m的取值范围;
    (2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.
    【解答】解:(1)由题意△≥0,
    ∴(2m﹣1)2﹣4(m2﹣3)≥0,
    ∴m≤.

    (2)当m=2时,方程为x2+3x+1=0,
    ∴x1+x2=﹣3,x1x2=1,
    ∵方程的根为x1,x2,
    解法一:x12+3x1+1=0,x22+3x2+1=0,
    ∴(x12+2x1)(x22+4x2+2)
    =(x12+2x1+x1﹣x1)(x22+3x2+x2+2)
    =(﹣1﹣x1)(﹣1+x2+2)
    =(﹣1﹣x1)(x2+1)
    =﹣x2﹣x1x2﹣1﹣x1
    =﹣x2﹣x1﹣2
    =3﹣2
    =1.
    解法二:x12+2x1=3x1+x12﹣x1+1﹣1=﹣x1﹣1
    x22+4x2+2=x22+3x2+1+x2+1=x2+1
    ∴(x12+2x1)(x22+4x2+2)
    =(﹣1﹣x1)(x2+1)
    =﹣x2﹣x1x2﹣1﹣x1
    =﹣x2﹣x1﹣2
    =3﹣2
    =1.
    八.一次函数的应用(共1小题)
    12.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
    (1)求一件A型、B型丝绸的进价分别为多少元?
    (2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
    ①求m的取值范围.
    ②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
    【解答】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元
    根据题意得:
    解得x=400
    经检验,x=400为原方程的解
    ∴x+100=500
    答:一件A型、B型丝绸的进价分别为500元,400元.
    (2)①根据题意得:

    ∴m的取值范围为:16≤m≤25且为整数.
    ②设销售这批丝绸的利润为y
    根据题意得:
    y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)
    =(100﹣n)m+10000﹣50n
    ∵50≤n≤150
    ∴(Ⅰ)当50≤n<100时,100﹣n>0
    m=25时,
    销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500
    (Ⅱ)当n=100时,100﹣n=0,
    销售这批丝绸的最大利润w=5000
    (Ⅲ)当100<n≤150时,100﹣n<0
    当m=16时,
    销售这批丝绸的最大利润w=﹣66n+11600.
    综上所述:w=.
    九.反比例函数与一次函数的交点问题(共5小题)
    13.(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.
    (1)求直线AB与双曲线的解析式.
    (2)求△ABC的面积.

    【解答】解:(1)设双曲线的解析式为y=,
    ∵点A(1,6)在该双曲线上,
    ∴6=,
    解得k=6,
    ∴y=,
    ∵B(m,﹣2)在双曲线y=上,
    ∴﹣2=,
    解得m=﹣3,
    设直线AB的函数解析式为y=ax+b,

    解得,
    即直线AB的解析式为y=2x+4;
    (2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE和FA交于点E,如右图所示,
    直线BO的解析式为y=ax,
    ∵点B(﹣3,﹣2),
    ∴﹣2=﹣3a,
    解得a=,
    ∴直线BO的解析式为y=x,

    解得或,
    ∴点C的坐标为(3,2),
    ∵点A(1,6),B(﹣3,﹣2),C(3,2),
    ∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,
    ∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC
    =8×6﹣﹣﹣
    =48﹣16﹣12﹣4
    =16.

    14.(2021•南充)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
    (1)求直线AB和反比例函数的解析式;
    (2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.

    【解答】解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,
    ∵反比例函数的图象过点B(4,1),
    ∴k=4×1=4,
    把点A(0,﹣1),B(4,1)代入y=ax+b得,
    解得,
    ∴直线AB解析式为y=,反比例函数的解析式为y=;
    (2)解得或,
    ∴C(﹣2,﹣2),
    设直线CD的解析式为y=mx+n,
    把C(﹣2,﹣2),D(﹣1,0)代入得,
    解得,
    ∴直线CD的解析式为y=2x+2,
    由得或,
    ∴E(1,4),
    ∴S△BCE=6×6﹣×3﹣﹣=.

    15.(2020•南充)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.
    (1)求反比例函数的解析式.
    (2)求四边形OCDB的面积.

    【解答】解:(1)∵点A(a,8)在直线y=2x上,
    ∴a=4,A(4,8),
    ∵AB⊥y轴于点B,AB=4BD,
    ∴BD=1,即D(1,8),
    ∵点D在y=上,
    ∴k=8.
    ∴反比例函数的解析式为y=.

    (2)由,解得或(舍弃),
    ∴C(2,4),
    ∴S四边形OBDC=S△AOB﹣S△ADC=×4×8﹣×4×3=10.

    16.(2019•南充)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.
    (1)求k与b的值;
    (2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.

    【解答】解:(1)∵点A(﹣m,m﹣2),B(1,n)在直线y=﹣2x+b上,
    ∴,
    解得:,
    ∴B(1,﹣4),
    代入反比例函数解析式,
    ∴﹣4=,
    ∴k=﹣4.
    (2)∵直线AB的解析式为y=﹣2x﹣2,
    令x=0,解得y=﹣2,令y=0,解得x=﹣1,
    ∴C(﹣1,0),D(0,﹣2),
    ∵点E为CD的中点,
    ∴E(),
    ∴S△BOE=S△ODE+S△ODB==
    =.
    17.(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
    (1)求直线与双曲线的解析式.
    (2)点P在x轴上,如果S△ABP=3,求点P的坐标.

    【解答】解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),
    ∴m=﹣1.
    ∴双曲线的表达式为y=﹣.
    ∵点B(n,﹣1)在双曲线y=﹣上,
    ∴点B的坐标为(1,﹣1).
    ∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
    ∴,解得,
    ∴直线的表达式为y=﹣2x+1;

    (2)当y=﹣2x+1=0时,x=,
    ∴点C(,0).
    设点P的坐标为(x,0),
    ∵S△ABP=3,A(﹣,2),B(1,﹣1),
    ∴×3|x﹣|=3,即|x﹣|=2,
    解得:x1=﹣,x2=.
    ∴点P的坐标为(﹣,0)或(,0).

    一十.二次函数的应用(共3小题)
    18.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
    (1)求苹果的进价;
    (2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
    (3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
    【解答】(1)解:设苹果的进价为x元/千克,
    根据题意得:,
    解得:x=10,
    经检验x=10是原方程的根,且符合题意,
    答:苹果的进价为10元/千克.
    (2)解:当0≤x≤100时,y=10x;
    当x>100时,y=10×100+(x﹣100)(10﹣2)=8x+200;
    ∴y=.
    (3)解:当0≤x≤100时,
    w=(z﹣10)x
    =()x
    =,
    ∴当x=100时,w有最大值为100;
    当100<x≤300时,
    w=(z﹣10)×100+(z﹣8)(x﹣100)
    =()×100+()(x﹣100)

    =,
    ∴当x=200时,w有最大值为200;
    ∵200>100,
    ∴一天购进苹果数量为200千克时,超市销售苹果利润最大为200元.
    答:一天购进苹果数量为200千克时,超市销售苹果利润最大.
    19.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
    (1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
    (2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)

    【解答】解:(1)由图可知,当0<x≤12时,z=16,
    当12<x≤20时,z是关于x的一次函数,设z=kx+b,

    解得:
    ∴z=﹣x+19,
    ∴z关于x的函数解析式为z=
    (2)设第x个生产周期工厂创造的利润为w万元,
    ①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,
    ∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);
    ②当12<x≤20时,
    w=(﹣x+19﹣10)(5x+40)
    =﹣x2+35x+360
    =﹣(x﹣14)2+605,
    因为﹣<0,
    ∴当x=14时,w最大值=605(万元).
    综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.
    20.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
    (1)钢笔、笔记本的单价分别为多少元?
    (2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
    【解答】解:(1)设钢笔、笔记本的单价分别为x、y元,
    根据题意得,,
    解得:,
    答:钢笔、笔记本的单价分别为10元,6元;
    (2)设钢笔的单价为a元,购买数量为b支,支付钢笔和笔记本的总金额w元,
    ①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,
    ∵当b=30时,w=720,当b=50时,w=700,
    ∴当30≤b≤50时,700≤w≤722.5;
    ②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,
    ∴当30≤b≤60时,w的最小值为700元,
    ∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.
    一十一.二次函数综合题(共5小题)
    21.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
    (1)求抛物线的解析式.
    (2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
    (3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.


    【解答】解:(1)由题意得,

    ∴,
    ∴y=﹣;
    (2)如图1,

    作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC的距离等于直线l到BC的距离,
    ∵BC的解析式为y=x﹣4,
    ∴设直线l的解析式为:y=x+b,
    由=x+b得,
    x2﹣4x﹣3(b+4)=0,
    ∵Δ=0,
    ∴﹣3(b+4)=4,
    ∴b=﹣,
    ∴x2﹣4x+4=0,y=x﹣,
    ∴x=2,y=﹣,
    ∴P1(2,﹣),
    ∵E(0,﹣),C(0,﹣4),
    ∴F(0,﹣4×2﹣(﹣)),
    即(0,﹣),
    ∴直线m的解析式为:y=x﹣,
    ∴,
    ∴,,
    ∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),
    综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);
    (3)如图2,

    作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,
    设D点的横坐标为a,
    ∵BN=DN,
    ∴BD=2BN,N点的横坐标为:,
    ∴OH=,
    ∵MH∥DF,
    ∴△BHN∽△BFD,
    ∴,
    ∴DF=2NH,
    同理可得:△OMG∽△ONH,
    ∴=,
    ∴MG=2NH,OG=2OH=a+4,
    ∴KF=MG=DF,
    ∵tan∠DEB=2tan∠DBE
    ∴=2•,
    ∴EF=,
    ∵BF=4﹣a,
    ∴EF=,
    ∵EF∥MK,
    ∴△DEF∽△DMK,
    ∴=,
    ∴,
    ∴a=0,
    ∴OG=a+4=4,
    ∴G(﹣4,0),
    当x=﹣4时,y=﹣﹣4=,
    ∴M(﹣4,).
    22.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
    (1)求抛物线的解析式;
    (2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
    (3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.

    【解答】解:(1)由题意得:,解得,
    故抛物线的表达式为y=x2﹣5x+4①;

    (2)对于y=x2﹣5x+4,令y=x2﹣5x+4=0,解得x=1或4,令x=0,则y=4,
    故点B的坐标为(4,0),点C(0,4),
    设直线BC的表达式为y=kx+t,则,解得,
    故直线BC的表达式为y=﹣x+4,
    设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),
    则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x,
    ∵﹣1<0,
    故PQ有最大值,当x=2时,PQ的最大值为4=CO,
    此时点Q的坐标为(2,﹣2);
    ∵PQ=CO,PQ∥OC,
    故四边形OCPQ为平行四边形;

    (3)∵D是OC的中点,则点D(0,2),
    由点D、Q的坐标,同理可得,直线DQ的表达式为y=﹣2x+2,
    过点Q作QH⊥x轴于点H,
    则QH∥CO,故∠AQH=∠ODA,
    而∠DQE=2∠ODQ.
    ∴∠HQA=∠HQE,
    则直线AQ和直线QE关于直线QH对称,

    故设直线QE的表达式为y=2x+r,
    将点Q的坐标代入上式并解得r=﹣6,
    故直线QE的表达式为y=2x﹣6②,
    联立①②并解得(不合题意的值已舍去),
    故点E的坐标为(5,4),
    设点F的坐标为(0,m),
    由点B、E的坐标得:BE2=(5﹣4)2+(4﹣0)2=17,
    同理可得,当BE=BF时,即16+m2=17,解得m=±1;
    当BE=EF时,即25+(m﹣4)2=17,方程无解;
    当BF=EF时,即16+m2=25+(m﹣4)2,解得m=;
    故点F的坐标为(0,1)或(0,﹣1)或(0,).
    23.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
    (1)求二次函数的解析式.
    (2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.

    【解答】解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),
    ∴设二次函数的解析式为y=a(x+2)(x﹣4),
    ∵二次函数图象过点C(0,4),
    ∴4=a(0+2)(0﹣4),
    ∴a=﹣,
    ∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
    (2)存在,
    理由如下:如图1,取BC中点Q,连接MQ,

    ∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,
    ∴P(﹣1,2),点Q(2,2),BC==4,
    设直线BP解析式为:y=kx+b,
    由题意可得:,
    解得:
    ∴直线BP的解析式为:y=﹣x+,
    ∵∠BMC=90°
    ∴点M在以BC为直径的圆上,
    ∴设点M(c,﹣c+),
    ∵点Q是Rt△BCM的中点,
    ∴MQ=BC=2,
    ∴MQ2=8,
    ∴(c﹣2)2+(﹣c+﹣2)2=8,
    ∴c=4或﹣,
    当c=4时,点B,点M重合,即c=4,不合题意舍去,
    ∴c=﹣,则点M坐标(﹣,),
    故线段PB上存在点M(﹣,),使得∠BMC=90°;
    (3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,

    ∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,
    ∴点D(1,0),OB=OC=4,AB=6,BD=3,
    ∴∠OBC=45°,
    ∵DE⊥BC,
    ∴∠EDB=∠EBD=45°,
    ∴DE=BE==,
    ∵点B(4,0),C(0,4),
    ∴直线BC解析式为:y=﹣x+4,
    设点E(n,﹣n+4),
    ∴﹣n+4=,
    ∴n=,
    ∴点E(,),
    在Rt△DNE中,NE===,
    ①若DK与射线EC交于点N(m,4﹣m),
    ∵NE=BN﹣BE,
    ∴=(4﹣m)﹣,
    ∴m=,
    ∴点N(,),
    ∴直线DK解析式为:y=4x﹣4,
    联立方程组可得:,
    解得:或,
    ∴点K坐标为(2,4)或(﹣8,﹣36);
    ②若DK与射线EB交于N(m,4﹣m),
    ∵NE=BE﹣BN,
    ∴=﹣(4﹣m),
    ∴m=,
    ∴点N(,),
    ∴直线DK解析式为:y=x﹣,
    联立方程组可得:,
    解得:或,
    ∴点K坐标为(,)或(,),
    综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).
    24.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.
    (1)求抛物线的解析式;
    (2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
    (3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.
    ①求DE的最大值;
    ②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.

    【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),点B(﹣3,0)
    ∴设交点式y=a(x+1)(x+3)
    ∵OC=OB=3,点C在y轴负半轴
    ∴C(0,﹣3)
    把点C代入抛物线解析式得:3a=﹣3
    ∴a=﹣1
    ∴抛物线解析式为y=﹣(x+1)(x+3)=﹣x2﹣4x﹣3

    (2)如图1,过点A作AG⊥BC于点G,过点P作PH⊥x轴于点H
    ∴∠AGB=∠AGC=∠PHO=90°
    ∵∠ACB=∠POB
    ∴△ACG∽△POH


    ∵OB=OC=3,∠BOC=90°
    ∴∠ABC=45°,BC==3
    ∴△ABG是等腰直角三角形
    ∴AG=BG=AB=
    ∴CG=BC﹣BG=3﹣=2

    ∴OH=2PH
    设P(p,﹣p2﹣4p﹣3)
    ①当p<﹣3或﹣1<p<0时,点P在点B左侧或在AC之间,横纵坐标均为负数
    ∴OH=﹣p,PH=﹣(﹣p2﹣4p﹣3)=p2+4p+3
    ∴﹣p=2(p2+4p+3)
    解得:p1=,p2=
    ∴P(,)或(,)
    ②当﹣3<p<﹣1或p>0时,点P在AB之间或在点C右侧,横纵坐标异号
    ∴p=2(p2+4p+3)
    解得:p1=﹣2,p2=﹣
    ∴P(﹣2,1)或(﹣,)
    综上所述,点P的坐标为(,)、(,)、(﹣2,1)或(﹣,).

    (3)①如图2,∵x=m+4时,y=﹣(m+4)2﹣4(m+4)﹣3=﹣m2﹣12m﹣35
    ∴M(m,﹣m2﹣4m﹣3),N(m+4,﹣m2﹣12m﹣35)
    设直线MN解析式为y=kx+n
    ∴ 解得:
    ∴直线MN:y=(﹣2m﹣8)x+m2+4m﹣3
    设D(d,﹣d2﹣4d﹣3)(m<d<m+4)
    ∵DE∥y轴
    ∴xE=xD=d,E(d,(﹣2m﹣8)d+m2+4m﹣3)
    ∴DE=﹣d2﹣4d﹣3﹣[(﹣2m﹣8)d+m2+4m﹣3]=﹣d2+(2m+4)d﹣m2﹣4m=﹣[d﹣(m+2)]2+4
    ∴当d=m+2时,DE的最大值为4.

    ②如图3,∵D、F关于点E对称,
    ∴DE=EF
    ∵四边形MDNF是矩形
    ∴MN=DF,且MN与DF互相平分
    ∴DE=MN,E为MN中点
    ∴xD=xE==m+2
    由①得当d=m+2时,DE=4
    ∴MN=2DE=8
    ∴(m+4﹣m)2+[﹣m2﹣12m﹣35﹣(﹣m2﹣4m﹣3)]2=82
    解得:m1=﹣4﹣,m2=﹣4+
    ∴m的值为﹣4﹣或﹣4+时,四边形MDNF为矩形.



    25.(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
    (1)求抛物线的解析式.
    (2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.
    (3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.

    【解答】解:(1)设y=a(x﹣1)2+4(a≠0),
    把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,
    则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;
    (2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,
    ∵S△PBC=S△QBC,
    ∴PQ∥BC,
    ①过P作PQ∥BC,交抛物线于点Q,如图1所示,

    ∵P(1,4),∴直线PQ解析式为y=﹣x+5,
    联立得:,
    解得:或,即(1,4)与P重合,Q1(2,3);
    ②∵S△BCQ=S△BCP,
    ∴PG=GH
    ∵直线BC的解析式为y=﹣x+3,P(1,4)
    ∴G(1,2),
    ∴PG=GH=2,
    过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,
    联立得:,
    解得:或,
    ∴Q2(,),Q3(,);
    (3)存在点M,N使四边形MNED为正方形,

    如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,
    设M(x1,y1),N(x2,y2),设直线MN解析式为y=﹣x+b,
    联立得:,
    消去y得:x2﹣3x+b﹣3=0,
    ∴NF2=|x1﹣x2|2=(x1+x2)2﹣4x1x2=21﹣4b,
    ∵△MNF为等腰直角三角形,
    ∴MN2=2NF2=42﹣8b,
    ∵H(x2,﹣x2+3),
    ∴NH2=[y2﹣(﹣x2+3)]2=(﹣x2+b+x2﹣3)2=(b﹣3)2,
    ∴NE2=(b﹣3)2,
    若四边形MNED为正方形,则有NE2=MN2,
    ∴42﹣8b=(b2﹣6b+9),
    整理得:b2+10b﹣75=0,
    解得:b=﹣15或b=5,
    ∵正方形边长为MN=,
    ∴MN=9或.

    相关试卷

    04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编:

    这是一份04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共16页。试卷主要包含了容易题,基础题等内容,欢迎下载使用。

    04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编:

    这是一份04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共21页。试卷主要包含了解不等式组等内容,欢迎下载使用。

    04解答题(基础题)-四川省达州市五年(2018-2022)中考数学真题分类汇编(共25题):

    这是一份04解答题(基础题)-四川省达州市五年(2018-2022)中考数学真题分类汇编(共25题),共41页。试卷主要包含了0+2sin60°﹣|1﹣|,0+,﹣2+﹣,,其中a=﹣1,÷的值,其中x=+1,化简代数式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map