04解答题(基础题)-四川省凉山州五年(2018-2022)中考数学真题分类汇编(共25题)
展开
这是一份04解答题(基础题)-四川省凉山州五年(2018-2022)中考数学真题分类汇编(共25题),共29页。试卷主要包含了﹣2+|﹣2|,阅读以下材料,,其中x=,,其中a=﹣等内容,欢迎下载使用。
04解答题-四川省凉山州五年(2018-2022)中考数学真题分类汇编
一.实数的运算(共2小题)
1.(2019•凉山州)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.
2.(2018•凉山州)计算:()﹣1﹣|﹣2+tan45°|+(﹣2018)0﹣(﹣)(+).
二.同底数幂的乘法(共1小题)
3.(2021•凉山州)阅读以下材料:
苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.
我们根据对数的定义可得到对数的一个性质:
loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下:
设logaM=m,logaN=n,则M=am,N=an,
∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N).
又∵m+n=logaM+logaN,
∴loga(M•N)=logaM+logaN.
根据上述材料,结合你所学的知识,解答下列问题:
(1)填空:①log232= ,②log327= ,③log71= ;
(2)求证:loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)拓展运用:计算log5125+log56﹣log530.
三.整式的混合运算—化简求值(共3小题)
4.(2020•凉山州)化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=.
5.(2019•凉山州)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.
6.(2018•凉山州)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.
四.因式分解的应用(共1小题)
7.(2021•凉山州)已知x﹣y=2,=1,求x2y﹣xy2的值.
五.分式的化简求值(共1小题)
8.(2022•凉山州)先化简,再求值:(m+2+)•,其中m为满足﹣1<m<4的整数.
六.解一元一次方程(共1小题)
9.(2020•凉山州)解方程:x﹣=1+.
七.解一元二次方程-因式分解法(共1小题)
10.(2022•凉山州)解方程:x2﹣2x﹣3=0.
八.根与系数的关系(共1小题)
11.(2022•凉山州)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.
材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,
∴m+n=1,mn=﹣1,
则m2n+mn2=mn(m+n)=﹣1×1=﹣1.
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2= .x1x2= .
(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.
九.不等式的性质(共1小题)
12.(2018•凉山州)阅读材料:基本不等式≤(a>0,b>0),当且仅当a=b时,等号成立.其中我们把叫做正数a、b的算术平均数,叫做正数a、b的几何平均数,它是解决最大(小)值问题的有力工具.
例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
当且仅当x=即x=1时,x+有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若x>0,函数y=2x+,当x为何值时,函数有最值,并求出其最值.
(2)当x>0时,式子x2+1+≥2成立吗?请说明理由.
一十.解一元一次不等式(共1小题)
13.(2021•凉山州)解不等式:﹣x<3﹣.
一十一.解一元一次不等式组(共1小题)
14.(2019•凉山州)根据有理数乘法(除法)法则可知:
①若ab>0(或>0),则或;
②若ab<0(或<0),则或.
根据上述知识,求不等式(x﹣2)(x+3)>0的解集
解:原不等式可化为:(1)或(2).
由(1)得,x>2,
由(2)得,x<﹣3,
∴原不等式的解集为:x<﹣3或x>2.
请你运用所学知识,结合上述材料解答下列问题:
(1)不等式x2﹣2x﹣3<0的解集为 .
(2)求不等式<0的解集(要求写出解答过程)
一十二.一次函数的应用(共1小题)
15.(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.
(1)求A、B两种类型羽毛球拍的单价.
(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.
一十三.反比例函数与一次函数的交点问题(共3小题)
16.(2021•凉山州)如图,△AOB中,∠ABO=90°,边OB在x轴上,反比例函数y=(x>0)的图象经过斜边OA的中点M,与AB相交于点N,S△AOB=12,AN=.
(1)求k的值;
(2)求直线MN的解析式.
17.(2020•凉山州)如图,已知直线l:y=﹣x+5.
(1)当反比例函数y=(k>0,x>0)的图象与直线l在第一象限内至少有一个交点时,求k的取值范围.
(2)若反比例函数y=(k>0,x>0)的图象与直线l在第一象限内相交于点A(x1,y1)、B(x2,y2),当x2﹣x1=3时,求k的值,并根据图象写出此时关于x的不等式﹣x+5<的解集.
18.(2018•凉山州)▱ABCO在平面直角坐标系中的位置如图所示,直线y1=kx+b与双曲线y2=(m>0)在第一象限的图象相交于A、E两点,且A(3,4),E是BC的中点.
(1)连接OE,若△ABE的面积为S1,△OCE的面积为S2,则S1 S2(直接填“>”“<”或“=”);
(2)求y1和y2的解析式;
(3)请直接写出当x取何值时y1>y2.
一十四.抛物线与x轴的交点(共1小题)
19.(2019•凉山州)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.
一十五.二次函数的应用(共1小题)
20.(2018•凉山州)结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.
(1)用含x的代数式表示出口的宽度;
(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;
(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.
(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.
一十六.二次函数综合题(共5小题)
21.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
22.(2021•凉山州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,AC=,OB=OC=3OA.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.
23.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(,)三点.
(1)求二次函数的解析式;
(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;
(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.
24.(2019•凉山州)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.
25.(2018•凉山州)已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒
(1)求抛物线解析式;
(2)当t为何值时,△AMN为直角三角形;
(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.
参考答案与试题解析
一.实数的运算(共2小题)
1.(2019•凉山州)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.
【解答】解:原式=1+1﹣4+(2﹣)=.
2.(2018•凉山州)计算:()﹣1﹣|﹣2+tan45°|+(﹣2018)0﹣(﹣)(+).
【解答】解:原式=3﹣2++1﹣(﹣1)=3+.
二.同底数幂的乘法(共1小题)
3.(2021•凉山州)阅读以下材料:
苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.
我们根据对数的定义可得到对数的一个性质:
loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下:
设logaM=m,logaN=n,则M=am,N=an,
∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N).
又∵m+n=logaM+logaN,
∴loga(M•N)=logaM+logaN.
根据上述材料,结合你所学的知识,解答下列问题:
(1)填空:①log232= 5 ,②log327= 3 ,③log71= 0 ;
(2)求证:loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)拓展运用:计算log5125+log56﹣log530.
【解答】解:(1)log232=log225=5,log327=log333=3,log71=log770=0;
故答案为:5,3,0;
(2)证明:设logaM=m,logaN=n,则M=am,N=an,
∴==am﹣n,由对数的定义得m﹣n=loga,
又∵m﹣n=logaM﹣logaN,
∴loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)原式=log5(125×6÷30)
=log525
=2.
三.整式的混合运算—化简求值(共3小题)
4.(2020•凉山州)化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=.
【解答】解:原式=4x2﹣9﹣(x2+4x+4)+4x+12
=4x2﹣9﹣x2﹣4x﹣4+4x+12
=3x2﹣1,
当x=时,
原式=3×()2﹣1
=3×2﹣1
=6﹣1
=5.
5.(2019•凉山州)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.
【解答】解:
原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8
=2a+2
将a=﹣代入原式=2×(﹣)+2=1
6.(2018•凉山州)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.
【解答】解:原式=﹣3x2﹣(2x2+x+2x2﹣2.5)
=﹣3x2﹣2x2﹣x﹣2x2+2.5
=﹣7x2﹣x+2.5,
解不等式组得:1≤x<2,
则不等式组的整数解为x=1,
所以原式=﹣7﹣1+2.5=﹣5.5.
四.因式分解的应用(共1小题)
7.(2021•凉山州)已知x﹣y=2,=1,求x2y﹣xy2的值.
【解答】解:∵=1,
∴y﹣x=xy.
∵x﹣y=2,
∴y﹣x=xy=﹣2.
∴原式=xy(x﹣y)=﹣2×2=﹣4.
五.分式的化简求值(共1小题)
8.(2022•凉山州)先化简,再求值:(m+2+)•,其中m为满足﹣1<m<4的整数.
【解答】解:(m+2+)•
=•
=•
=•
=﹣2(m+3)
=﹣2m﹣6,
∵m≠2,m≠3,
∴当m=1时,原式=﹣2×1﹣6
=﹣2﹣6
=﹣8.
六.解一元一次方程(共1小题)
9.(2020•凉山州)解方程:x﹣=1+.
【解答】解:去分母,得:6x﹣3(x﹣2)=6+2(2x﹣1),
去括号,得:6x﹣3x+6=6+4x﹣2,
移项,得:6x﹣3x﹣4x=6﹣6﹣2,
合并同类项,得:﹣x=﹣2,
系数化为1,得:x=2.
七.解一元二次方程-因式分解法(共1小题)
10.(2022•凉山州)解方程:x2﹣2x﹣3=0.
【解答】解:原方程可以变形为(x﹣3)(x+1)=0
x﹣3=0,x+1=0
∴x1=3,x2=﹣1.
八.根与系数的关系(共1小题)
11.(2022•凉山州)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.
材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,
∴m+n=1,mn=﹣1,
则m2n+mn2=mn(m+n)=﹣1×1=﹣1.
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2= .x1x2= ﹣ .
(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.
【解答】解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,
∴x1+x2==,x1x2==﹣,
故答案为:,﹣;
(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,
∴m+n=,mn=﹣,
∴
=
=
=
=;
(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,
∴s,与t看作是方程2x2﹣3x﹣1=0的两个实数根,
∴s+t=,st=﹣,
∴(s﹣t)2=(s+t)2﹣4st,
(s﹣t)2=()2﹣4×(﹣),
(s﹣t)2=,
∴s﹣t=,
∴
=
=
=
=.
九.不等式的性质(共1小题)
12.(2018•凉山州)阅读材料:基本不等式≤(a>0,b>0),当且仅当a=b时,等号成立.其中我们把叫做正数a、b的算术平均数,叫做正数a、b的几何平均数,它是解决最大(小)值问题的有力工具.
例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
当且仅当x=即x=1时,x+有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若x>0,函数y=2x+,当x为何值时,函数有最值,并求出其最值.
(2)当x>0时,式子x2+1+≥2成立吗?请说明理由.
【解答】解:(1)∵x>0,
∴2x>0,
∴2x+≥2=2,
当且仅当2x=即x=时,2x+有最小值,最小值为2.
(2)不等式不成立.
理由:∵x>0,
∴x2+1>0,>0,
∴x2+1+≥2=2,
当x2+1=时,等号成立,解得x=0,不符合题意,
∴不等式不成立.
一十.解一元一次不等式(共1小题)
13.(2021•凉山州)解不等式:﹣x<3﹣.
【解答】解:去分母,得:4(1﹣x)﹣12x<36﹣3(x+2),
去括号,得:4﹣4x﹣12x<36﹣3x﹣6,
移项、合并,得:﹣13x<26,
系数化为1,得:x>﹣2.
一十一.解一元一次不等式组(共1小题)
14.(2019•凉山州)根据有理数乘法(除法)法则可知:
①若ab>0(或>0),则或;
②若ab<0(或<0),则或.
根据上述知识,求不等式(x﹣2)(x+3)>0的解集
解:原不等式可化为:(1)或(2).
由(1)得,x>2,
由(2)得,x<﹣3,
∴原不等式的解集为:x<﹣3或x>2.
请你运用所学知识,结合上述材料解答下列问题:
(1)不等式x2﹣2x﹣3<0的解集为 ﹣1<x<3 .
(2)求不等式<0的解集(要求写出解答过程)
【解答】解:(1)原不等式可化为:①或②.
由①得,空集,
由②得,﹣1<x<3,
∴原不等式的解集为:﹣1<x<3,
故答案为:﹣1<x<3.
(2)由<0知①或②,
解不等式组①,得:x>1;
解不等式组②,得:x<﹣4;
所以不等式<0的解集为x>1或x<﹣4.
一十二.一次函数的应用(共1小题)
15.(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.
(1)求A、B两种类型羽毛球拍的单价.
(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.
【解答】解:(1)设A种球拍每副x元,B种球拍每副y元,
,
解得,
答:A种球拍每副40元,B种球拍每副32元;
(2)设购买B型球拍a副,总费用w元,
依题意得30﹣a≥2a,
解得a≤10,
w=40(30﹣a)+32a=﹣8a+1200,
∵﹣8<0,
∴w随a的增大而减小,
∴当a=10时,w最小,w最小=﹣8×10+1200=1120(元),
此时30﹣10=20(副),
答:费用最少的方案是购买A种球拍20副,B种球拍10副,所需费用1120元.
一十三.反比例函数与一次函数的交点问题(共3小题)
16.(2021•凉山州)如图,△AOB中,∠ABO=90°,边OB在x轴上,反比例函数y=(x>0)的图象经过斜边OA的中点M,与AB相交于点N,S△AOB=12,AN=.
(1)求k的值;
(2)求直线MN的解析式.
【解答】解:(1)设N(a,b),则OB=a,BN=b,
∵AN=,
∴AB=b+,
∴A(a,b+),
∵M为OA中点,
∴M(a,b+),
而反比例函数y=(x>0)的图象经过斜边OA的中点M,
∴k=a•(b+)=ab,
解得:b=,
∵S△AOB=12,∠ABO=90°,
∴OB•AB=12,即a(b+)=12,
将b=代入得:,
解得a=4,
∴N(4,),M(2,3),
∴k=4×=6;
(2)由(1)知:M(2,3),N(4,),
设直线MN解析式为y=mx+n,
∴,解得,
∴直线MN解析式为y=﹣x+.
17.(2020•凉山州)如图,已知直线l:y=﹣x+5.
(1)当反比例函数y=(k>0,x>0)的图象与直线l在第一象限内至少有一个交点时,求k的取值范围.
(2)若反比例函数y=(k>0,x>0)的图象与直线l在第一象限内相交于点A(x1,y1)、B(x2,y2),当x2﹣x1=3时,求k的值,并根据图象写出此时关于x的不等式﹣x+5<的解集.
【解答】解:(1)将直线l的表达式与反比例函数表达式联立并整理得:x2﹣5x+k=0,
由题意得:△=25﹣4k≥0,解得:k≤,
故k的取值范围0<k≤;
(2)设点A(m,﹣m+5),而x2﹣x1=3,则点B(m+3,﹣m+2),
点A、B都在反比例函数上,故m(﹣m+5)=(m+3)(﹣m+2),解得:m=1,
故点A、B的坐标分别为(1,4)、(4,1);
将点A的坐标代入反比例函数表达式并解得:k=4×1=4,
观察函数图象知,当﹣x+5<时,0<x<1或x>4.
18.(2018•凉山州)▱ABCO在平面直角坐标系中的位置如图所示,直线y1=kx+b与双曲线y2=(m>0)在第一象限的图象相交于A、E两点,且A(3,4),E是BC的中点.
(1)连接OE,若△ABE的面积为S1,△OCE的面积为S2,则S1 = S2(直接填“>”“<”或“=”);
(2)求y1和y2的解析式;
(3)请直接写出当x取何值时y1>y2.
【解答】解:(1)由图形可知△ABE和△OCE底边相等,高相等
故答案为:=
(2)∵A(3,4)在双曲线上
∴m=xy=12
∴双曲线y2=
∵A(3,4),E是BC的中点
∴点E纵坐标为2
∵点E在双曲线y2=
∴点E坐标为(6,2)
把点E(6,2),A(3,4)代入y1=kx+b得
解得
∴y1的解析式为:y1=﹣
(3)当y1>y2时,y1的图象高于y2的图象.
则对应x的取值范围为:3<x<6
一十四.抛物线与x轴的交点(共1小题)
19.(2019•凉山州)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.
【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,
∴x1+x2=﹣1,x1•x2=a,
∵+===1,
∴a=﹣1+或a=﹣1﹣;
∵△=1﹣4a>0,
∴a<,
∴a=﹣1﹣;
一十五.二次函数的应用(共1小题)
20.(2018•凉山州)结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.
(1)用含x的代数式表示出口的宽度;
(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;
(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.
(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.
【解答】解:(1)由题意可得,
出口的宽度为(80﹣2x)cm;
(2)由题意可得,BC=EF=80﹣2x,
∴AB=CD==x﹣10,
y=50×4×x(x﹣10)+60×[60×80﹣4×x(x﹣10)]=﹣20x2+200x+288000,
∵36≤80﹣2x≤44,
∴18≤x≤22,
(3)﹣20x2+200x+288000≤284000,
x2﹣10x﹣200≥0,
设m=x2﹣10x﹣200=(x﹣5)2﹣225,
当m=0时,x2﹣10x﹣200=0,x=20或﹣10,
∴当m≥0时,x≤﹣10或x≥20
由(2)知:18≤x≤22,
∴20≤x≤22,
所以业主委员会投资28.4万元,能完成全部工程,
所有工程方案如下:①较长直角边为20m,短直角边为10m,出口宽度为40m;
②较长直角边为21m,短直角边为11m,出口宽度为38m;
③较长直角边为22m,短直角边为12m,出口宽度为36m;
(4)y=﹣20x2+200x+288000=﹣20(x﹣5)2+288500,
在20≤x≤22中y随x的增大而减小,
∴当x=22时,y有最小值,
绿化面积=4××22×(22﹣10)=528,
设原计划每天绿化xm2,则在实际施工中,每天绿化(x+11)m2,
则﹣=4,
解得:x=33或﹣44(舍),
经检验x=33是原方程的解,
答:原计划每天绿化33m2.
一十六.二次函数综合题(共5小题)
21.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,
得,
解得:,
∴抛物线解析式为y=﹣x2+2x+3;
(2)∵y=﹣(x﹣1)2+4,
∴C(1,4),抛物线的对称轴为直线x=1,
如图,设CD=t,则D(1,4﹣t),
∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
∴∠PDC=90°,DP=DC=t,
∴P(1+t,4﹣t),
把P(1+t,4﹣t)代入y=﹣x2+2x+4得:
﹣(1+t)2+2(1+t)+3=4﹣t,
整理得t2﹣t=0,
解得:t1=0(舍去),t2=1,
∴P(2,3);
(3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,
∴E点坐标为(1,﹣1),
∴点E关于y轴的对称点F(﹣1,﹣1),
连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,
设直线PF的解析式为y=kx+n,
∴,
解得:,
∴直线PF的解析式为y=x+,
∴点M的坐标为(0,).
22.(2021•凉山州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,AC=,OB=OC=3OA.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.
【解答】解:(1)∵OC=3OA,AC=,∠AOC=90°,
∴OA2+OC2=AC2,即OA2+(3OA)2=()2,
解得:OA=1,
∴OC=3,
∴A(1,0),C(0,3),
∵OB=OC=3,
∴B(﹣3,0),
设抛物线解析式为y=a(x+3)(x﹣1),将C(0,3)代入,
得:﹣3a=3,
解得:a=﹣1,
∴y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,
∴该抛物线的解析式为y=﹣x2﹣2x+3;
(2)如图1,过点P作PK∥y轴交BC于点K,
设直线BC解析式为y=kx+n,将B(﹣3,0),C(0,3)代入,
得:,
解得:,
∴直线BC解析式为y=x+3,
设P(t,﹣t2﹣2t+3),则K(t,t+3),
∴PK=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,
∴S△PBC=S△PBK+S△PCK=PK•(t+3)+PK•(0﹣t)=PK=(﹣t2﹣3t),
S△ABC=AB•OC=×4×3=6,
∴S四边形PBAC=S△PBC+S△ABC=(﹣t2﹣3t)+6=﹣(t+)2+,
∵﹣<0,
∴当t=﹣时,四边形PBAC的面积最大,此时点P的坐标为(﹣,);
(3)存在.如图2,分两种情况:点Q在x轴上方或点Q在x轴下方.
①当点Q在x轴上方时,P与Q纵坐标相等,
∴﹣x2﹣2x+3=,
解得:x1=﹣,x2=﹣(舍去),
∴Q1(﹣,),
②当点Q在x轴下方时,P与Q纵坐标互为相反数,
∴﹣x2﹣2x+3=﹣,
解得:x1=﹣,x2=,
∴Q2(﹣,﹣),Q3(,﹣),
综上所述,Q点的坐标为Q1(﹣,),Q2(﹣,﹣),Q3(,﹣).
23.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(,)三点.
(1)求二次函数的解析式;
(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;
(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.
【解答】解:(1)将点O、A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2﹣x;
(2)由点B的坐标知,直线BO的倾斜角为30°,
∵BO⊥AD,
则∠BOA+∠BOC=90°,∠BOC+∠OCA=90°,
∴∠OCA=∠BOA=30°,
则CD与x轴负半轴的夹角为60°,
故设CD的表达式为:y=﹣x+b,而OB中点的坐标为(,),
将该点坐标代入CD表达式并解得:b=,
故直线CD的表达式为:y=﹣x+;
(3)设点P(x,x2﹣x),则点Q(x,﹣x+),
则PQ=﹣x+﹣(x2﹣x)=﹣x2﹣x+,
∵<0,
∴当x=﹣时,PQ有最大值,
此时点P的坐标为(﹣,).
24.(2019•凉山州)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)
∴可设交点式y=a(x+1)(x﹣3)
把点C(0,3)代入得:﹣3a=3
∴a=﹣1
∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3
∴抛物线解析式为y=﹣x2+2x+3
(2)在抛物线的对称轴上存在一点P,使得△PAC的周长最小.
如图1,连接PB、BC
∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称
∴PA=PB
∴C△PAC=AC+PC+PA=AC+PC+PB
∵当C、P、B在同一直线上时,PC+PB=CB最小
∵A(﹣1,0)、B(3,0)、C(0,3)
∴AC=,BC=
∴C△PAC=AC+CB=最小
设直线BC解析式为y=kx+3
把点B代入得:3k+3=0,解得:k=﹣1
∴直线BC:y=﹣x+3
∴yP=﹣1+3=2
∴点P(1,2)使△PAC的周长最小,最小值为.
(3)存在满足条件的点M,使得S△PAM=S△PAC.
∵S△PAM=S△PAC
∴当以PA为底时,两三角形等高
∴点C和点M到直线PA距离相等
①若点M在点P上方,如图2,
∴CM∥PA
∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d
∴ 解得:
∴直线AP:y=x+1
∴直线CM解析式为:y=x+3
∵ 解得:(即点C),
∴点M坐标为(1,4)
②若点M在点P下方,如图3,
则点M所在的直线l∥PA,且直线l到PA的距离等于直线y=x+3到PA的距离
∴直线AP:y=x+1向下平移2个单位得y=x﹣1即为直线l的解析式
∵ 解得:
∵点M在x轴上方
∴y>0
∴点M坐标为(,)
综上所述,点M坐标为(1,4)或(,)时,S△PAM=S△PAC.
25.(2018•凉山州)已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒
(1)求抛物线解析式;
(2)当t为何值时,△AMN为直角三角形;
(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.
【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于A、B两点,
∴点A的坐标为(﹣3,0),点B的坐标为(0,3).
将A(﹣3,0)、B(0,3)代入y=x2+bx+c,得:
,解得:,
∴抛物线解析式为y=x2+4x+3.
(2)当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),
∴AM=3﹣t,AN=t.
∵△AMN为直角三角形,∠MAN=45°,
∴△AMN为等腰直角三角形(如图1).
当∠ANM=90°时,有AM=AN,即3﹣t=2t,
解得:t=1;
当∠AMN=90°时,有t﹣3=﹣t,
解得:t=.
综上所述:当t为1秒或秒时,△AMN为直角三角形.
(3)设NH与x轴交于点E,如图2所示.
当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),
∴点E的坐标为(t﹣3,0),点H的坐标为(t﹣3,t2﹣2t).
∵MH∥AB,
∴∠EMH=45°,
∴△EMH为等腰直角三角形,
∴ME=HE,即|2t﹣3|=|t2﹣2t|,
解得:t1=1,t2=3(舍去),t3=,t4=﹣(舍去).
当t=时,点E在点M的右边,点H在x轴下方,
∴此时MH⊥AB,
∴t=1.
∴存在点H使MH∥AB,点H的坐标为(﹣2,﹣1).
相关试卷
这是一份04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共16页。试卷主要包含了容易题,基础题等内容,欢迎下载使用。
这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-04 解答题基础题,共15页。试卷主要包含了+|﹣8|﹣,计算,2+3﹣2﹣|﹣|等内容,欢迎下载使用。
这是一份04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共21页。试卷主要包含了解不等式组等内容,欢迎下载使用。