中考数学知识点和部分定义汇总
展开中考:中考数学知识点和部分定义汇总 在中考数学中几何做的如何直接决定了中考数学是否能够拿到高分,是否能够拉开差距。由此看来,数学中几何对于中考数学来说非常重要。那么面对几何的重要性,我们需要注意如下几点: 1、重视新课中的基础。在学校学习新课的时候就一定要打扎实基础,把每一个基础的知识点弄清楚。把每一个定理和定理的证明方法弄明白,从而联想到相关的知识点。上课勤做笔记,记住每一个闪光的思路。 2、注重归纳。把自己在课本辅导书上做到的相关的题型总结在一起,经常回顾,同时标记重要题型。 3、保持四边形、三角形中辅助线添加熟练。特别是几何三大变换,旋转、平移、轴对称要熟练,多练习这类型的题目。 4、多练习题目。 5、熟练掌握初中阶段数学模型。掌握模型,熟练运用阶梯技巧。 要想对几何有更深入的了解那么就必须先知道几何中各种定义的含义下面为大家介绍几何的部分定义: 一、线与角 1.两点之间,线段最短。 2.经过两点有一条直线,并且只有一条直线。 3.等角的补角相等,等角的余角相等。 4.对顶角相等 5.经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6.(1)经过已知直线外一点,有且只有一条直线与已知直线平行。 (2)如果两条直线都和第三条直线平行,那么这两条直线也平行. 7.连接直线外一点与直线上各点的所有线段中,垂线段最短。 8.平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. 9.平行线的特征: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 10.角平分线的性质:角平分线上的点到这个角的两边的距离相等. 角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 11.线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 二、三角形、多边形 12.三角形中的有关公理、定理: (1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°. (2)三角形内角和定理:三角形的内角和等于180°. (3)三角形的任何两边的和大于第三边 (4)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 13.多边形中的有关公理、定理: (1)多边形的内角和定理:n边形的内角和等于(n-2)×180°. (2)多边形的外角和定理:任意多边形的外角和都为360°. 14.(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。 15.等腰三角形中的有关公理、定理: (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”) (3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”. (4)等边三角形的各个内角都相等,并且每一个内角都等于60°. (5)三个角都相等的三角形是等边三角形。 (6)有一个角是60°的等腰三角形是等边三角形。 16.直角三角形的有关公理、定理: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.