2022年浙江省舟山市中考数学试卷解析版
展开2022年浙江省舟山市中考数学试卷
一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)
1.(3分)若收入3元记为+3,则支出2元记为( )
A.1 B.﹣1 C.2 D.﹣2
2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是( )
A. B.
C. D.
3.(3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为( )
A.2.51×108 B.2.51×107 C.25.1×107 D.0.251×109
4.(3分)用尺规作一个角的角平分线,下列作法中错误的是( )
A. B.
C. D.
5.(3分)估计的值在( )
A.4和5之间 B.3和4之间 C.2和3之间 D.1和2之间
6.(3分)如图,在△ABC中,AB=AC=8.点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是( )
A.32 B.24 C.16 D.8
7.(3分)A,B两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是( )
A.>且SA2>SB2 B.>且SA2<SB2
C.<且SA2>SB2 D.<且SA2<SB2
8.(3分)上学期某班的学生都是双人桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x人,女生y人,根据题意可得方程组为( )
A. B.
C. D.
9.(3分)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为( )
A. B. C.4 D.
10.(3分)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为( )
A. B.2 C. D.1
二、填空题(本题有6小题,每题4分,共24分)
11.(4分)分解因式:m2+m= .
12.(4分)正八边形一个内角的度数为 .
13.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 .
14.(4分)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k= .
15.(4分)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为 (N)(用含n,k的代数式表示).
16.(4分)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为 ,折痕CD的长为 .
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.(6分)(1)计算:﹣(﹣1)0.
(2)解不等式:x+8<4x﹣1.
18.(6分)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
小惠:
证明:∵AC⊥BD,OB=OD,
∴AC垂直平分BD.
∴AB=AD,CB=CD,
∴四边形ABCD是菱形.
小洁:
这个题目还缺少条件,需要补充一个条件才能证明.
若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.
19.(6分)观察下面的等式:=+,=+,=+,……
(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数).
(2)请运用分式的有关知识,推理说明这个结论是正确的.
20.(8分)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:
x(h)
…
11
12
13
14
15
16
17
18
…
y(cm)
…
189
137
103
80
101
133
202
260
…
(数据来自某海洋研究所)
(1)数学活动:
①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.
②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?
(2)数学思考:
请结合函数图象,写出该函数的两条性质或结论.
(3)数学应用:
根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?
21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
(1)连结DE,求线段DE的长.
(2)求点A,B之间的距离.
(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:
调查问卷(部分)
1.你每周参加家庭劳动时间大约是______h.
如果你每周参加家庭劳动时间不足2h,请回答第2个问题:
2.影响你每周参加家庭劳动的主要原因是______(单选).
A.没时间
B.家长不舍得
C.不喜欢
D.其它
中小学生每周参加家庭劳动时间x(h) 分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).
根据以上信息,解答下列问题:
(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?
(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?
(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.
23.(10分)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
24.(12分)如图1,在正方形ABCD中,点F,H分别在边AD,AB上,连结AC,FH交于点E,已知CF=CH.
(1)线段AC与FH垂直吗?请说明理由.
(2)如图2,过点A,H,F的圆交CF于点P,连结PH交AC于点K.求证:=.
(3)如图3,在(2)的条件下,当点K是线段AC的中点时,求的值.
2022年浙江省舟山市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)
1.【分析】根据正负数的意义可得收入为正,支出为负解答即可.
【解答】解:若收入3元记为+3,则支出2元记为﹣2,
故选:D.
2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【解答】解:从正面看底层是三个正方形,上层左边是一个正方形.
故选:B.
3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【解答】解:251000000=2.51×108.
故选:A.
4.【分析】根据各个选项中的作图,可以判断哪个选项符合题意.
【解答】解:由图可知,选项A、B、C中的线都可以作为角平分线;
选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线,
故选:D.
5.【分析】根据无理数的估算分析解题.
【解答】解:∵4<6<9,
∴<<,
∴2<<3,
故选:C.
6.【分析】根据EF∥AC,GF∥AB,可以得到四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再根据AB=AC=8和等量代换,即可求得四边形AEFG的周长.
【解答】解:∵EF∥AC,GF∥AB,
∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠EFB,∠GFC=∠C,
∴EB=EF,FG=GC,
∵四边形AEFG的周长是AE+EF+FG+AG,
∴四边形AEFG的周长是AE+EB+GC+AG=AB+AC,
∵AB=AC=8,
∴四边形AEFG的周长是AG+AC=8+8=16,
故选:C.
7.【分析】根据平均数及方差的意义直接求解即可.
【解答】解:A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.
故选:B.
8.【分析】根据男生与女生同桌,这些女生占全班女生的,可以得到x=y,根据本学期该班新转入4个男生后,男女生刚好一样多,可得x+4=y,从而可以列出相应的方程组,本题得以解决.
【解答】解:由题意可得,
,
故选:A.
9.【分析】根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.
【解答】解:作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,
∵DB=DE=2,∠BDE=90°,点A是DE的中点,
∴BE===2,DA=EA=1,
∴AB===,
∵AB=BC,
∴BC=,
∵=,
∴,
解得EG=,
∵EG⊥BG,EF⊥BF,∠ABF=90°,
∴四边形EFBG是矩形,
∴EG=BF=,
∵BE=2,BF=,
∴EF===,CF=BF+BC=+=,
∵∠EFC=90°,
∴EC===,
故选:D.
10.【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c=2.
【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,
∴,
由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,
∵ab的最大值为9,
∴k<0,﹣=9,
解得k=﹣,
把k=﹣代入②得:4×(﹣)+3=c,
∴c=2,
故选:B.
二、填空题(本题有6小题,每题4分,共24分)
11.【分析】根据多项式的特征选择提取公因式法进行因式分解.
【解答】解:m2+m=m(m+1).
故答案为:m(m+1).
12.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3,且n为正整数)求出内角和,然后再计算一个内角的度数.
【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为×1080°=135°.
故答案为:135°.
13.【分析】直接根据概率公式可求解.
【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,
∴从中随机摸出一个小球,恰好是黑球的概率是;
故答案为:.
14.【分析】由点B的坐标为(4,3)求出BC=5,又AB=BC,AB与y轴平行,可得A(4,8),用待定系数法即得答案.
【解答】解:∵点B的坐标为(4,3),C(0,0),
∴BC==5,
∴AB=BC=5,
∵AB与y轴平行,
∴A(4,8),
把A(4,8)代入y=得:
8=,
解得k=32,
故答案为:32.
15.【分析】根据“动力×动力臂=阻力×阻力臂”分别列式,从而代入计算.
【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,
由题意可得BP•k=PA•a,B′P•k′=PA•a,
∴BP•k=B′P•k′,
又∵B′P=nBP,
∴k′==,
故答案为:.
16.【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质开证明∠EOF=60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.
【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,
∴OO′⊥CD,CH=DH,O′C=OA=6,
∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.
∴∠O′EO=∠O′FO=90°,
∵∠AOB=120°,
∴∠EO′F=60°,
则的度数为60°;
∵∠AOB=120°,
∴∠O′OF=60°,
∵O′F⊥OB,O′E=O′F=O′C=6,
∴OO′===4,
∴O′H=2,
∴CH===2,
∴CD=2CH=4.
故答案为:60°,4.
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.【分析】(1)根据立方根和零指数幂可以解答本题;
(2)根据解一元一次不等式的方法可以解答本题.
【解答】解:(1)﹣(﹣1)0
=2﹣1
=1;
(2)x+8<4x﹣1
移项及合并同类项,得:﹣3x<﹣9,
系数化为1,得:x>3.
18.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.
【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴平行四边形ABCD是菱形.
19.【分析】(1)观察已知等式,可得规律,用含n的等式表达即可;
(2)先通分,计算同分母分式相加,再约分,即可得到(1)中的等式.
【解答】解:(1)观察规律可得:=+;
(2)∵+
=+
=
=,
∴=+.
20.【分析】(1)①先描点,然后画出函数图象;
②利用数形结合思想分析求解;
(2)结合函数图象增减性及最值进行分析说明;
(3)结合函数图象确定关键点,从而求得取值范围.
【解答】解:(1)①如图:
②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;
(2)该函数的两条性质如下(答案不唯一):
①当2≤x≤7时,y随x的增大而增大;
②当x=14时,y有最小值为80;
(3)由图象,当y=260时,x=5或x=10或x=18或x=23,
∴当5<x<10或18<x<23时,y>260,
即当5<x<10或18<x<23时,货轮进出此港口.
21.【分析】(1)过点C作CF⊥DE于点F,根据等腰三角形的性质可得∠DCF=20°,利用锐角三角函数即可解决问题;
(2)根据横截面是一个轴对称图形,延长CF交AD、BE延长线于点G,连接AB,所以DE∥AB,根据直角三角形两个锐角互余可得∠A=∠GDE=20°,然后利用锐角三角函数即可解决问题.
【解答】解:(1)如图,过点C作CF⊥DE于点F,
∵CD=CE=5cm,∠DCE=40°.
∴∠DCF=20°,
∴DF=CD•sin20°≈5×0.34≈1.7(cm),
∴DE=2DF≈3.4cm,
∴线段DE的长约为3.4cm;
(2)∵横截面是一个轴对称图形,
∴延长CF交AD、BE延长线于点G,
连接AB,
∴DE∥AB,
∴∠A=∠GDE,
∵AD⊥CD,BE⊥CE,
∴∠GDF+∠FDC=90°,
∵∠DCF+∠FDC=90°,
∴∠GDF=∠DCF=20°,
∴∠A=20°,
∴DG=≈≈1.8(cm),
∴AG=AD+DG=10+1.8=11.8(cm),
∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).
∴点A,B之间的距离22.2cm.
22.【分析】(1)由中位数的定义即可得出结论;
(2)用1200乘“不喜欢”所占百分比即可;
(3)根据中位数解答即可.
【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,
故中位数落在第三组;
(2)(1200﹣200)×(1﹣8.7%﹣43.2%﹣30.6%)=175(人),
答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;
(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).
23.【分析】(1)把A(1,0)代入y=a(x+1)2﹣4即可解得抛物线L1的函数表达式为y=x2+2x﹣3;
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2,顶点为(﹣1,﹣4+m),关于原点的对称点为(1,4﹣m),代入y=x2+2x﹣3可解得m的值为4;
(3)把抛物线L1向右平移n(n>0)个单位得抛物线L3为y=(x﹣n+1)2﹣4,根据点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,当t>6时,s>r,可得[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,即可解得n的取值范围是n>3.
【解答】解:(1)把A(1,0)代入y=a(x+1)2﹣4得:
a(1+1)2﹣4=0,
解得a=1,
∴y=(x+1)2﹣4=x2+2x﹣3;
答:抛物线L1的函数表达式为y=x2+2x﹣3;
(2)抛物线L1:y=(x+1)2﹣4的顶点为(﹣1,﹣4),
将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(﹣1,﹣4+m),
而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
把(1,4﹣m)代入y=x2+2x﹣3得:
12+2×1﹣3=4﹣m,
解得m=4,
答:m的值为4;
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x﹣n+1)2﹣4,
∵点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,
∴s=(8﹣t﹣n+1)2﹣4=(9﹣t﹣n)2﹣4,
r=(t﹣4﹣n+1)2﹣4=(t﹣n﹣3)2﹣4,
∵当t>6时,s>r,
∴s﹣r>0,
∴[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,
整理变形得:(9﹣t﹣n)2﹣(t﹣n﹣3)2>0,
(9﹣t﹣n+t﹣n﹣3)(9﹣t﹣n﹣t+n+3)>0,
(6﹣2n)(12﹣2t)>0,
∵t>6,
∴12﹣2t<0,
∴6﹣2n<0,
解得n>3,
∴n的取值范围是n>3.
24.【分析】(1)通过证明Rt△DCF≌Rt△BCH,结合正方形和等腰三角形的性质进行推理证明;
(2)过点K作KM⊥AH,交AH于点M,通过证明△KMH∽△CBH,KM∥BC,从而利用相似三角形的性质分析推理;
(3)设圆的半径为r,∠FHP=α,在(2)的条件下,根据线段中点的概念结合解直角三角形求得CP=CK•cosα,PF=2r•sinα,从而进行分析计算.
【解答】(1)解:线段AC与FH垂直,理由如下:
在正方形ABCD中,CD=CB,∠D=∠B=90°,∠DCA=∠BCA=45°,
在Rt△DCF和Rt△BCH中
,
∴Rt△DCF≌Rt△BCH(HL),
∴∠DCF=∠BCH,
∴∠FCA=∠HCA,
又∵CF=CH,
∴AC⊥FH;
(2)证明:∵∠DAB=90°,
∴FH为圆的直径,
∴∠FPH=90°,
又∵CF=CH,AC⊥FH,
∴点E为FH的中点,
∴∠CFD=∠KHA,
又∵Rt△DCF≌Rt△BCH,
∴∠CFD=∠CHB,
∴∠KHA=∠CHB,
过点K作KM⊥AH,交AH于点M,
∴∠KMH=∠B=90°,
∴△KMH∽△CBH,KM∥BC,
∴,,
∴.
(3)解:设∠FHP=α,则∠FCA=∠HCA=∠FHP=α,
设⊙E的半径为r,则EF=AE=EH=r,
在Rt△EHK中,=cosα,即KH==,
在Rt△ECH中,=sinα,即CH=,
又∵点K是AC的中点,
∴=tanα=,
∴cosα=,sinα=,
在Rt△CPK中,=cosα,即CP=CK•cosα,
在Rt△FPH中,=sinα,即PF=2r•sinα,
∵点K是线段AC的中点,
∴CK=AK==(AE+CE),
∴r+r•tanα=(r+),
解得:tana=,
在Rt△EHK中,=tanα,即EK=r•tanα,
CK=AK=AE+EK=r+r•tanα=r,
∴CP=CK•cosα=r=r,PF=2r•sinα=2r=r,
∴=.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/6/18 18:36:47;用户:微信用户;邮
2022年浙江省舟山市中考数学试卷+精细解析: 这是一份2022年浙江省舟山市中考数学试卷+精细解析,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019浙江省嘉兴、舟山市中考数学试卷--解析版: 这是一份2019浙江省嘉兴、舟山市中考数学试卷--解析版,共14页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
浙江省舟山市2022年中考数学试卷解析版: 这是一份浙江省舟山市2022年中考数学试卷解析版,共9页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。