|试卷下载
搜索
    上传资料 赚现金
    2022年四川省自贡市中考数学试卷解析版
    立即下载
    加入资料篮
    2022年四川省自贡市中考数学试卷解析版01
    2022年四川省自贡市中考数学试卷解析版02
    2022年四川省自贡市中考数学试卷解析版03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省自贡市中考数学试卷解析版

    展开
    这是一份2022年四川省自贡市中考数学试卷解析版,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年四川省自贡市中考数学试卷
    一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)
    1.(4分)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是(  )

    A.30° B.40° C.60° D.150°
    2.(4分)自贡市江姐故里红色教育基地自去年底开放以来,截止到今年5月,共接待游客180000余人.人数180000用科学记数法表示为(  )
    A.1.8×104 B.18×104 C.1.8×105 D.1.8×106
    3.(4分)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是(  )

    A. B.
    C. D.
    4.(4分)下列运算正确的是(  )
    A.(﹣1)2=﹣2 B.(+)(﹣)=1
    C.a6÷a3=a2 D.(﹣)0=0
    5.(4分)如图,菱形ABCD对角线交点与坐标原点O重合,点A(﹣2,5),则点C的坐标是(  )


    A.(5,﹣2) B.(2,﹣5) C.(2,5) D.(﹣2,﹣5)
    6.(4分)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是(  )
    A. B.
    C. D.
    7.(4分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是(  )

    A.90° B.100° C.110° D.120°
    8.(4分)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是(  )
    A.平均数是14 B.中位数是14.5
    C.方差是3 D.众数是14
    9.(4分)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是(  )
    A.30° B.40° C.50° D.60°
    10.(4分)P为⊙O外一点,PT与⊙O相切于点T,OP=10,∠OPT=30°,则PT长为(  )
    A.5 B.5 C.8 D.9
    11.(4分)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是(  )

    A.方案1 B.方案2
    C.方案3 D.方案1或方案2
    12.(4分)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
    ①c≥﹣2;
    ②当x>0时,一定有y随x的增大而增大;
    ③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
    ④当四边形ABCD为平行四边形时,a=.
    其中正确的是(  )
    A.①③ B.②③ C.①④ D.①③④
    二、填空题(共6个小题,每小题4分,共24分)
    13.(4分)计算:|﹣2|=   .
    14.(4分)分解因式:m2+m=   .
    15.(4分)化简:•+=   .
    16.(4分)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是    鱼池.(填甲或乙)
    17.(4分)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为    厘米.

    18.(4分)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为    .

    三、解答题(共8个题,共78分)
    19.(8分)解不等式组:,并在数轴上表示其解集.


    20.(8分)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.

    21.(8分)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
    22.(8分)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:

    (1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
    (2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
    (3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
    23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.
    (1)求反比例函数和一次函数的解析式;
    (2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.

    24.(10分)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
    (1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC=   ,EF=   ;
    (2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
    (3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.

    25.(12分)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
    (1)探究原理
    制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.

    (2)实地测量
    如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
    (3)拓展探究
    公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).

    26.(14分)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.



    2022年四川省自贡市中考数学试卷
    参考答案与试题解析
    一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)
    1.【分析】根据对顶角相等可得∠2=∠1=30°.
    【解答】解:∵∠1=30°,∠1与∠2是对顶角,
    ∴∠2=∠1=30°.
    故选:A.
    2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:180000=1.8×105,
    故选:C.
    3.【分析】将矩形纸片ABCD绕边CD所在直线旋转一周,可知上面和下面都是平面,所以得到的立体图形是圆体.
    【解答】解:根据“点动成线,线动成面,面动成体”,
    将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.
    故选:A.
    4.【分析】根据有理数的乘方判断A选项;根据平方差公式判断B选项;根据同底数幂的除法判断C选项;根据零指数幂判断D选项.
    【解答】解:A、原式=1,故该选项不符合题意;
    B、原式=()2﹣()2=3﹣2=1,故该选项符合题意;
    C、原式=a3,故该选项不符合题意;
    D、原式=1,故该选项不符合题意;
    故选:B.
    5.【分析】菱形的对角线相互平分可知点A与C关于原点对称,从而得结论.
    【解答】解:∵四边形ABCD是菱形,
    ∴OA=OC,即点A与点C关于原点对称,
    ∵点A(﹣2,5),
    ∴点C的坐标是(2,﹣5).
    故选:B.
    6.【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【解答】解:选项A,B,C都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
    选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.
    故选:D.
    7.【分析】方法一:根据圆周角定理可以得到∠AOD的度数,再根据三角形内角和可以求得∠OAD的度数,然后根据圆内接四边形对角互补,即可得到∠BCD的度数.
    方法二:根据AB是⊙O的直径,可以得到∠ADB=90°,再根据∠ABD=20°和三角形内角和,可以得到∠A的度数,然后根据圆内接四边形对角互补,即可得到∠BCD的度数.
    【解答】解:方法一:连接OD,如图所示,
    ∵∠ABD=20°,
    ∴∠AOD=40°,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵∠OAD+∠ODA+∠AOD=180°,
    ∴∠OAD=∠ODA=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠OAD+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.
    方法二:∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ABD=20°,
    ∴∠A=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠A+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.

    8.【分析】分别计算这组数据的平均数,中位数,方差,众数即可得出答案.
    【解答】解:A选项,平均数=(13+14+15+14+14+15)÷6=14(岁),故该选项不符合题意;
    B选项,这组数据从小到大排序为:13,14,14,14,15,15,中位数==14(岁),故该选项不符合题意;
    C选项,方差=×[(13﹣14)2+(14﹣14)2×3+(15﹣14)2×2]=,故该选项不符合题意;
    D选项,14出现的次数最多,众数是14岁,故该选项符合题意;
    故选:D.
    9.【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.
    【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,
    根据题意得:x+x+2x+20=180,
    解得:x=40,
    故选:B.
    10.【分析】根据切线的性质得到∠OTP=90°,根据含30度角的直角三角形的性质得到OT的值,根据勾股定理即可求解.
    【解答】解:方法一:如图,∵PT与⊙O相切于点T,
    ∴∠OTP=90°,
    又∵OP=10,∠OPT=30°,
    ∴OT=OP=×10=5,
    ∴PT===5.
    故选:A.
    方法二:在Rt△OPT中,∵cosP=,
    ∴PT=OP•cos30°=10×=5.
    故选:A.

    11.【分析】分别计算三个方案的菜园面积进行比较即可.
    【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,

    则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,
    当x=2时,此时菜园最大面积为8米2;
    方案2:当∠BAC=90°时,菜园最大面积=×4×4=8米2;

    方案3:半圆的半径=,
    ∴此时菜园最大面积==米2>8米2;
    故选:C.
    12.【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.
    【解答】解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),
    ∴线段AB与y轴的交点坐标为(0,﹣2),
    又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
    ∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;
    ∵抛物线的顶点在线段AB上运动,开口向上,
    ∴当x>1时,一定有y随x的增大而增大,故②错误;
    若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,
    ∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,
    ∴点C的横坐标最大值为3,故③正确;
    令y=0,则ax2+bx+c=0,
    CD2=(﹣)2﹣4×=,
    根据顶点坐标公式,=﹣2,
    ∴=﹣8,即=8,
    ∴CD2=×8=,
    ∵四边形ACDB为平行四边形,
    ∴CD=AB=1﹣(﹣3)=4,
    ∴=42=16,
    解得a=,故④正确;
    综上所述,正确的结论有①③④.
    故选:D.

    二、填空题(共6个小题,每小题4分,共24分)
    13.【分析】根据绝对值定义去掉这个绝对值的符号.
    【解答】解:∵﹣2<0,
    ∴|﹣2|=2.
    故答案为:2.
    14.【分析】根据多项式的特征选择提取公因式法进行因式分解.
    【解答】解:m2+m=m(m+1).
    故答案为:m(m+1).
    15.【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.
    【解答】解:•+
    =+
    =+
    =,
    故答案为:.
    16.【分析】根据题意和题目中的数据可以计算出甲鱼池和乙鱼池中鱼苗的数量,然后比较大小即可.
    【解答】解:由题意可得,
    甲鱼池中的鱼苗数量约为:100÷=2000(条),
    乙鱼池中的鱼苗数量约为:100÷=1000(条),
    ∵2000>1000,
    ∴初步估计鱼苗数目较多的是甲鱼池,
    故答案为:甲.
    17.【分析】根据题意,弦AB长20厘米,弓形高CD为2厘米,根据勾股定理和垂径定理可以求得圆的半径.
    【解答】解:如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,

    由题意可得:OC⊥AB,AC=AB=10(厘米),
    设镜面半径为x厘米,
    由题意可得:x2=102+(x﹣2)2,
    ∴x=26,
    ∴镜面半径为26厘米,
    故答案为:26.
    18.【分析】利用已知可以得出GC,EF长度不变,求出GE+CF最小时即可得出四边形CGEF周长的最小值,利用轴对称得出E,F位置,即可求出.
    【解答】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,

    ∵CH=EF=1,CH∥EF,
    ∴四边形EFCH是平行四边形,
    ∴EH=CF,
    ∴G'H=EG'+EH=EG+CF,
    ∵AB=4,BC=AD=2,G为边AD的中点,
    ∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,
    由勾股定理得:HG'==3,
    即GE+CF的最小值为3.
    故答案为:3.
    三、解答题(共8个题,共78分)
    19.【分析】先求出不等式的解集,求出不等式组的解集即可.
    【解答】解:由不等式3x<6,解得:x<2,
    由不等式5x+4>3x+2,解得:x>﹣1,
    ∴不等式组的解集为:﹣1<x<2,
    ∴在数轴上表示不等式组的解集为:

    20.【分析】要证明∠D=∠E,只要证明△ABD≌△ACE即可,根据等边三角形的性质和SAS可以证明△ABD≌△ACE,本题得以解决.
    【解答】证明:∵△ABC是等边三角形,
    ∴AB=AC,∠ABC=∠ACB=60°,
    ∴∠ABD=∠ACE=120°,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS),
    ∴∠D=∠E.
    21.【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.
    【解答】解:设张老师骑车的速度为x千米/小时,则汽车的速度为3x千米/小时,
    由题意可得:﹣2=,
    解得x=15,
    经检验,x=15是原分式方程的解,
    答:张老师骑车的速度是15千米/小时.
    22.【分析】(1)利用抽查的学生总数=A等级的人数÷对应的百分比计算,即可求D等级的人数;
    (2)用全校的学生人数乘以每周参加课外兴趣小组活动累计时间不少于4小时的学生所占的百分比,即可求解;
    (3)设A等级2人分别用A1,A2表示,D等级2人分别用D1,D2表示,画出树状图,即可求解.
    【解答】解:(1)n==100,
    ∴D等级的人数=100﹣40﹣15﹣10=35(人),
    条形统计图补充如下:

    (2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数=2000×=900(人),
    ∴每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;
    (3)设A等级2人分别用A1,A2表示,D等级2人分别用D1,D2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:

    ∴共有12种等可能结果,而选出2人中2人均属D等级有2种,
    ∴所求概率==.
    23.【分析】(1)先把A(﹣1,2)代入反比例函数y=求出n的值即可得出其函数解析式,再把B(m,﹣1)代入反比例函数的解析式即可得出m的值,把A,B两点的坐标代入一次函数y=kx+b,求出k、b的值即可得出其解析式;
    (2)根据已知确定AD的长和点D的坐标,由DC=2AD可得DC=6,从而得点C的坐标.
    【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,
    ∴n=2×(﹣1)=﹣2,
    ∴其函数解析式为y=﹣;
    ∵B(m,﹣1)在反比例函数的图象上,
    ∴﹣m=﹣2,
    ∴m=2,
    ∴B(2,﹣1).
    ∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,
    ∴,解得,
    ∴一次函数的解析式为:y=﹣x+1;

    (2)∵直线l∥y轴,AD⊥l,
    ∴AD=3,D(2,2),
    ∵DC=2DA,
    ∴DC=6,
    ∵点C是直线l上一动点,
    ∴C(2,8)或(2,﹣4).
    24.【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;
    (2)通过证明四边形BEFC是平行四边形,可得结论;
    (3)由勾股定理可求BH的长,由相似三角形的性质可求解.
    【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,
    ∴矩形ABCD的各边的长度没有改变,
    ∴AB=BE,EF=AD,CF=CD,
    故答案为:CD,AD;
    (2)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,AB=CD,AD=BC,
    ∵AB=BE,EF=AD,CF=CD,
    ∴BE=CF,EF=BC,
    ∴四边形BEFC是平行四边形,
    ∴EF∥BC,
    ∴EF∥AD;
    (3)如图,过点E作EG⊥BC于G,

    ∵DC=AB=BE=80cm,点H是CD的中点,
    ∴CH=DH=40cm,
    在Rt△BHC中,BH===50(cm),
    ∵EG⊥BC,
    ∴CH∥EG,
    ∴△BCH∽△BGE,
    ∴,
    ∴=,
    ∴EG=64,
    ∴EF与BC之间的距离为64cm.
    25.【分析】(1)根据图形和同角的余角相等可以说明理由;
    (2)根据锐角三角函数和题意,可以计算出PH的长;
    (3)根据锐角三角函数和题目中的数据,可以用含α、β、m的式子表示出PH.
    【解答】解:(1)∵∠COG=90°,∠AON=90°,
    ∴∠POC+∠CON=∠GON+∠CON,
    ∴∠POC=∠GON;
    (2)由题意可得,
    KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,
    ∵tan∠POQ=,
    ∴tan60°=,
    解得PQ=5,
    ∴PH=PQ+QH=5+1.5≈10.2(米),
    即树高PH为10.2米;
    (3)由题意可得,
    O1O2=m,O1E=O2F=DH=1.5米,
    由图可得,tanβ=,tanα=,
    ∴O2D=,O1D=,
    ∵O1O2=O2D﹣O1D,
    ∴m=﹣,
    ∴PD=,
    ∴PH=PD+DH=(+1.5)米.
    26.【分析】(1)利用待定系数法可求抛物线的解析式,即可求解;
    (2)由题意画出图象,结合图象可求解;
    (3)结合题意分别求出a=1,b=﹣1﹣c,将点P,点Q坐标代入可求y1,y2的值,即可求解.
    【解答】解:(1)由题意可得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴顶点坐标为(﹣1,4),
    当y=0时,则0=﹣x2﹣2x+3,
    ∴x1=1,x2=﹣3,
    ∴抛物线与x轴的交点坐标为(1,0),(﹣3,0);
    (2)如图,

    当y=3时,3=﹣x2﹣2x+3,
    ∴x1=0,x2=﹣2,
    由图象可得:当﹣2≤x≤0时,y≥3;
    (3)∵a+b+c=0且a>b>c,
    ∴a>0,c<0,b=﹣a﹣c,一元二次方程ax2+bx+c=0必有一根为x=1,
    ∵一元二次方程ax2+bx+c=0两根之差等于a﹣c,
    ∴方程的另一个根为1+c﹣a,
    ∴抛物线y=ax2+bx+c的对称轴为:直线x=1+,
    ∴﹣=1+,
    ∴a+c=﹣a2+ac+2a,
    ∴(a﹣1)(a﹣c)=0,
    ∵a>c,
    ∴a=1,P(﹣c,y1),Q(1+3c,y2),
    ∴b=﹣1﹣c,
    ∴抛物线解析式为:y=x2﹣(1+c)x+c,
    ∴当x=﹣c时,则y1=(﹣c)2﹣(1+c)(﹣c)+c=2c2+c﹣,
    当x=1+3c时,则y2=(1+3c)2﹣(1+c)(1+3c)+c=6c2+3c,
    ∴y2﹣y1=(6c2+3c)﹣(2c2+c﹣)=4(c+)2﹣,
    ∵b>c,
    ∴﹣1﹣c>c,
    ∴c<﹣,
    ∴4(c+)2﹣>0,
    ∴y2>y1.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/6/18 1
    相关试卷

    2023年四川省自贡市中考数学试卷(含答案解析): 这是一份2023年四川省自贡市中考数学试卷(含答案解析),共23页。试卷主要包含了 如图中六棱柱的左视图是, 下列说法正确的是等内容,欢迎下载使用。

    2023年四川省自贡市中考数学试卷(含答案与解析): 这是一份2023年四川省自贡市中考数学试卷(含答案与解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省自贡市中考数学试卷(含解析): 这是一份2023年四川省自贡市中考数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map