年终活动
搜索
    上传资料 赚现金

    山东省青岛市2019-2020学年高一下学期期末考试数学试题

    山东省青岛市2019-2020学年高一下学期期末考试数学试题第1页
    山东省青岛市2019-2020学年高一下学期期末考试数学试题第2页
    山东省青岛市2019-2020学年高一下学期期末考试数学试题第3页
    还剩7页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛市2019-2020学年高一下学期期末考试数学试题

    展开

    这是一份山东省青岛市2019-2020学年高一下学期期末考试数学试题,共10页。试卷主要包含了作答选择题时,在中,,,,则,如图,在四棱锥中,,,点等内容,欢迎下载使用。
    2019-2020学年度第二学期期末学业水平检测高一数学本试卷4页,22小题,满分150分.考试用时120分钟.   注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交. 一、单项选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。  1.已知复数的共轭复数为,且(其中是虚数单位),则     A B  C D2.某制药厂正在测试一种减肥药的疗效,有名志愿者服用此药,体重变化结果统计如下:体重变化体重减轻体重不变体重增加人数如果另有一人服用此药,估计这个人体重减轻的概率约为(       A B  C D3.若圆锥的底面半径与高均为,则圆锥的表面积等于(        A B  C D4.随机掷两枚骰子,记向上的点数之和是偶数为事件,记向上的点数之差为奇数为事件,则(        A  B  C互斥但不对立 D对立5.在中,,则        A B  C D6.在三棱柱中,上下底面均为等腰直角三角形,且平面,若该三棱柱存在内切球,则     A B  C D7.甲、乙两人独立地破译一份密码,破译的概率分别为,则密码被破译的概率为(     A B  C D8.设是两条不同的直线,是两个不同的平面,下述错误的是(        A.若,则  B.若,则    C.若,则 D.若,则 二、多项选择题:本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。 9.如图,在四棱锥中,分别为的中点,则下述正确的是(        A             B.直线异面        C D三点共线    10.某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为名学生进行了调查调查中使用了两个问题,问题:您的号是否为奇数?问题:您是否吸烟?被调查者随机从设计好的随机装置(内有除颜色外完全相同的白球个,红球个)中摸出一个小球:若摸出白球则回答问题,若摸出红球则回答问题,共有人回答,则下述正确的是(        A.估计被调查者中约有人吸烟 B.估计约有人对问题的回答为             C.估计该地区约有的中学生吸烟 D.估计该地区约有的中学生吸烟11.如图,在平行四边形中,分别为线段的中点,,则(        A        B              C      D12.如图,线段为圆的直径,点在圆上,,矩形所在平面和圆所在平面垂直,且,则下述正确的是(        A平面    B平面    C.点到平面的距离为       D.三棱锥外接球的体积为  三、填空题:本大题共4个小题,每小题5分,共20分。13.已知向量的夹角为,则             14.在三棱锥中,若平面平面.则直线平面所成角的大小为             15.设角的三个内角,已知向量,且.则角的大小为             16.某人有把钥匙,其中把能打开门,如果随机地取一把钥匙试着开门,把不能打开门的钥匙扔掉,那么第二次才能打开门的概率为             ;如果试过的钥匙又混进去,第二次才能打开门的概率为             (本题第一个空分,第二个空分) 四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。 17.(10分)已知是虚数单位,复数1          2)随机从复数中有放回的先后任取两个复数,求所取两个复数的模之积等于的概率.  18.(12分)如图,在几何体中,四边形为平行四边形,的中点,平面平面为线段上的一点,是等边三角形.1)证明:平面2)证明:3)证明:平面平面       19.(12分)这两个条件中任选一个,补充到下面问题中,并进行作答.中,内角的对边分别为              1)求角的大小;2)求的周长和面积.   20.(12分)如图,在半圆柱中,为上底面直径,为下底面直径,为母线,,点上,点上, 的中点. 1)求三棱锥的体积;2)求直线与直线所成角的余弦值;3)求二面角的正切值.       21.(12分)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出条鱼,检验鱼体中的汞含量与其体重的比值(单位:),数据统计如下:   1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的分位数;2)有两个水池,两水池之间有个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过条鱼.    )将其中汞的含量最低的条鱼分别放入水池和水池中,若这条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;    )将其中汞的含量最低的条鱼都先放入水池中,若这条鱼均会独立地且等可能地从其中任意一个小孔由水池进入水池且不再游回水池,求这两条鱼由不同小孔进入水池的概率.    22.(12分)某学校高一名学生参加数学竞赛,成绩均在分到分之间.学生成绩的频率分布直方图如右图: 1)估计这名学生分数的中位数与平均数;(精确到2)某老师抽取了名学生的分数:已知这个分数的平均数,标准差若剔除其中的两个分数,求剩余个分数的平均数与标准差.(参考公式:3)该学校有座构造相同教学楼,各教学楼高均为米,东西长均为米,南北宽均为 米.其中号教学楼在号教学楼的正南且楼距为米,号教学楼在号教学楼的正东且楼距为米.现有种型号的考试屏蔽仪,它们的信号覆盖半径依次为米,每个售价相应依次为元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:
    2019-2020学年度第二学期期末学业水平检测高一数学参考答案一、单项选择题:本大题共8小题,每小题5分,共40分。  1-8: B D A D    A B B C  二、多项选择题:本大题共4小题,每小题5分,共20分。9BCD  10BC  11AB     12ABC三、填空题:本大题共4个小题,每小题5分,共20分。13.      14.       15.      16. 1 ;(2      四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。 17.10分)解:1)由题意知:··················································1···································································2···································································3···································································42)设随机从复数中有放回的任取两个复数的样本点为则该随机试验的样本空间为········································6所以·······························································7设事件所取两个复数的模之积等于则事件所以························································9             所以······························································10 18.12分)解:1),在平行四边形中,连接点,的中点,连接·······················1因为点中点,所以的中位线,所以·································3所以平面 平面所以平面······························42)因为平面平面所以平面····························································7因为平面平面平面所以·······························································83)因为为正三角形,点中点,所以 又因为所以平面···························································11又因为平面所以,平面平面······················································12 19.12分)解:1)若选择因为,所以························································2所以因为,所以··························································4又因为所以·····························································6若选择(法一)由题意知,所以·······························································2因为当且仅当时,上式的等号成立,且·····································3所以·······························································5所以·······························································6(法二)设为方程,的两根··············································2解得,且····························································4所以·······························································5所以·······························································62)由正弦定理知:··················································7因为所以·······························································9所以的周长为·······················································10所以的面积·························································12 20.(12分)解:1)由题意知,为正三角形 所以·································2因为为圆柱的母线,所以平面 ······························3所以·································42)过点作圆柱的母线因为均为圆柱的母线,所以所以四边形为平行四边形,所以,所以为正三角形又因为为正三角形,所以所以,所以为直线所成的角············································6中, ·····························································7所以由余弦定理知:所以直线与直线所成角的余弦值为········································93)因为平面平面,所以又因为所以平面···························································10所以,因此为二面角的平面角···········································11中,所以二面角的正切值为················································12 21.(12分)解:1)由题意知,数据的中位数为······································1数据的众数为························································2数据的极差为························································3估计这批鱼该项数据的百分位数约为·······································42)(ⅰ)记两鱼最终均在水池为事件,则·······························5两鱼最终均在水池为事件,则·········································6因为事件与事件互斥,所以两条鱼最终在同一水池的概率·······································8(ⅱ)记两鱼同时从第一个小孔通过为事件两鱼同时从第二个小孔通过事件依次类推.因为两鱼的游动独立,所以··············································9因为事件,事件互斥,所以······························································10两条鱼由不同小孔进入水池为事件,则对立,所以······························································12 22.12分)解:1)因为所以中位数为满足·····················································1,解得····························································3设平均分为·································································42)由题意,剩余个分数的平均值为······································5因为个分数的标准差所以·······························································6所以剩余个分数的标准差为··········································83)将座教学楼完全包裹的球的最小直径为:因此若用一个覆盖半径为米的屏蔽仪则总费用为元;···························9将一座教学楼完全包裹的球的最小直径为因此若用个覆盖半径为米的屏蔽仪则总费用为元;···························10号教学楼与号教学楼完全包裹的球的最小直径为:又因为因此若用个覆盖半径为米和个覆盖半径为米的屏蔽仪则总费用为元;所以,让各教学楼均被屏蔽仪信号完全覆盖的最小花费为····················12 

    相关试卷

    精品解析:山东省临沂市2019-2020学年高一下学期期末考试数学试题:

    这是一份精品解析:山东省临沂市2019-2020学年高一下学期期末考试数学试题,文件包含精品解析山东省临沂市2019-2020学年高一下学期期末考试数学试题解析版doc、精品解析山东省临沂市2019-2020学年高一下学期期末考试数学试题原卷版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    山东省临沂市罗庄区2019-2020学年高一下学期期末考试数学试题:

    这是一份山东省临沂市罗庄区2019-2020学年高一下学期期末考试数学试题,共8页。试卷主要包含了07,如图所示的直观图中,,则其平面,已知非零向量,,若,且,等内容,欢迎下载使用。

    山东省济宁市2019-2020学年高一下学期期末考试数学试题:

    这是一份山东省济宁市2019-2020学年高一下学期期末考试数学试题,共11页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map