专题训练二 平行四边形解答题强化高分必刷精选题(22道)八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版)
展开专题训练二:平行四边形解答题强化高分必刷精选题(22道)
1.(2021·重庆市实验学校八年级期中)如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)若∠C=60°,AB=2,求EC的长;
(2)求证:AB=DG+FC.
2.(2021·吉林珲春·八年级期中)如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.
(1)求证:四边形EFGH 是平行四边形
(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________
3.(2022·全国·八年级)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.
(1)求证:△BEF≌△CDF.
(2)连接BD,CE,若∠BFD=2∠A,求证四边形BECD是矩形.
4.(2021·天津南开·八年级期中)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,求AM的最小值.
5.(2021·天津南开·八年级期中)如图,在菱形ABCD中,AE⊥BC于点E.
(1)如图1,若∠BAE=30°,AE=3,求菱形ABCD的周长及面积;
(2)如图2,作AF⊥CD于点F,连接EF,BD,求证:EF∥BD;
(3)如图3,设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1﹣S2的值.
6.(2021·北京师范大学附属实验中学分校八年级期中)在中,AE平分∠BAD,O为AE的中点,连接BO并延长,交AD于点F,连接EF,OC.
(1)求证:四边形ABEF是菱形;
(2)若点E为BC的中点,且BC=8,∠ABC=60°,求OC的长.
7.(2022·四川仁寿·八年级期末)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=62°,求∠GFC+∠BCF的值.
8.(2021·全国·八年级期中)已知正方形,点,分别在射线,射线上,,与交于
点.
(1)如图1,当点,分别在线段,上时,求证:,且;
(2)如图2,当点在线段延长线上时,将线段沿平移至,连接.
①依题意将图2补全;
②用等式表示线段,和之间的数量关系,并证明.
9.(2021·全国·八年级专题练习)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF
(1)求证:▱ABCD是菱形;
(2)若AB=5,AC=6,求▱ABCD的面积.
10.(2022·全国·八年级)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
11.(2021·湖南洪江·八年级期末)如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点E作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
12.(2021·江苏·苏州市景范中学校八年级阶段练习)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
13.(2021·安徽淮北·八年级期末)如图,矩形的顶点,分别在菱形的边,上,顶点、在菱形的对角线上.
(1)求证:;
(2)若为中点,,求菱形的周长.
14.(2019·全国·八年级单元测试)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2,求BE的长.
15.(2019·广西马山·八年级期末)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.
(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
16.(2021·江西吉安·八年级期末)如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.
(1)如图1,在旋转的过程中,求证:OE=OF;
(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;
(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.
17.(2020·四川·眉山市东坡区东坡中学八年级期中)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.
(1)求证:四边形DEFG为菱形;
(2)若CD=8,CF=4,求的值.
18.(2021·全国·八年级专题练习)在平行四边形ABCD中,E为BC边上一点,F为对角线AC上一点,连接DE、BF,若∠ADE与∠CBF的平分线DG、BG交于AC上一点G,连接EG.
(1)如图1,点B、G、D在同一直线上,若∠CBF=90°,CD=3,EG=2,求CE的长;
(2)如图2,若AG=AB,∠DEG=∠BCD,求证:AD=BF+DE.
19.(2019·江西·余干县第二中学八年级期末)如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.
(1)求对角线AC的长及菱形ABCD的面积.
(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.
(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.
20.(2020·湖南·耒阳市冠湘中学八年级期中)如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.
(1)a= cm,b= cm;
(2)t为何值时,EP把四边形BCDE的周长平分?
(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.
21.(2021·全国·八年级专题练习)(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于点M,交线段CD于点N,证明:AP=MN;
(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN;
(3)若正方形ABCD的边长为2,求线段EF的最大值与最小值.
22.(2020·黑龙江·桦南实验中学八年级期中)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.
参考答案:
1.(1);
(2)见解析
【解析】
【分析】
(1)先由,在中,求得,由平分,则,由,则,从而有,得出,再根据即可求得;
(2)延长至,使,连接,根据全等三角形的判定和性质可得,,,结合(1)中结论及利用外角的性质得出,根据等角对等边得出,由此即可证明.
(1)
解:在中,,,,
∴,
∴,
在中,
,
.
,
∵,平分,
,,
,
;
(2)
证明:如图所示:延长至,连接,使,
在和中,
,
,,
由(1)可得:
,
,即,
,
即.
【点睛】
本题考查了平行四边形的性质,等腰三角形的判定和性质,勾股定理,平行线的性质等,理解题意,作出辅助线,由补短法构造全等三角形是解题关键.
2.(1)见解析;(2)16
【解析】
【分析】
(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;
(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
∴,
∴OE=OG,OF=OH,
∴四边形EFGH是平行四边形;
(2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,
∴,
∴ ,
∵的周长为2(AB+BC)=32,
∴ ,
∴ ,
由(1)知:四边形EFGH是平行四边形,
∴四边形EFGH的周长为 .
【点睛】
本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.
3.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质可得ABCD且AB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.
(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明
【详解】
(1)∵四边形ABCD为平行四边形,
∴ABCD且AB=CD.
∵BE=AB,
∴BECD且BE=CD.
∴∠BEF=∠FDC,∠FBE=∠FCD,
∴△BEF≌△CDF.
(2)∵BECD且BE=CD.
∴四边形BECD为平行四边形,
∴DF=DE,CF=BC,
∵四边形ABCD为平行四边形,
∴∠FCD=∠A,
∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,
∴∠FDC=∠FCD,
∴FD=FC.
又DF=DE,CF=BC,
∴BC=DE,
∴▱BECD是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.
4.AM的最小值为2.4.
【解析】
【分析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:连接AP,如图所示:
∵∠BAC=90°,AB=6,AC=8,
∴BC==10,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP,EF与AP互相平分,
∵M是EF的中点,
∴M为AP的中点,
∴AM=AP,
∵AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,AP==4.8,
∴AP最短时,AP=4.8,
∴当AM最短时,AM=AP=2.4.
即AM的最小值为2.4.
【点睛】
本题主要考查了勾股定理、矩形的判定与性质、垂线段最短和直角三角形斜边上的中线性质;由直角三角形的面积求出AP是解决问题的关键.
5.(1)周长为 ,面积为
(2)见解析
(3)
【解析】
【分析】
(1)根据直角三角形的性质可得 ,再由勾股定理可得 ,从而得到 ,即可求解;
(2)根据菱形的性质和AE⊥BC,AF⊥CD,可得△ABE≌△ADF,从而得到BE=DF,进而得到CE=CF,则有∠CBF=∠CBD=(180°-∠C),即可求证;
(3)连接CG,可先证明△ADG≌△CDG,可得到AG=CG,△ADG和△CDG的面积相等,从而得到S1﹣S2=S△CEG,再由勾股定理可得 ,然后设 ,则 ,根据勾股定理可得 ,即可求解.
(1)
解:∵AE⊥BC,∠BAE=30°,
∴ ,
∵AE=3,
∴ ,
∴ ,
∴ ,
∵四边形ABCD是菱形,
∴ ,
∴菱形ABCD的周长为 ,面积为 ;
(2)
证明:∵四边形ABCD是菱形,
∴∠ABE=∠ADF,AB=AD=BC=CD,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在△ABE和△ADF中,
∵∠ABE=∠ADF,∠AEB=∠AFD,AB=AD,
∴△ABE≌△ADF(AAS),
∴BE=DF,
∵BC=CD,
∴CE=CF,
∴∠CBF=∠CBD=(180°-∠C),
∴EF∥BD;
(3)
解:连接CG,
∵四边形ABCD是菱形,
∴∠ADG=∠CDG,AD=CD,
在△ADG和△CDG中,
∵AD=CD,∠ADG=∠CDG, DG=DG,
∴△ADG≌△CDG,
∴AG=CG,△ADG和△CDG的面积相等,
∴S1﹣S2=S△CEG,
∵CE=4,BE=8,
∴AB=BC=CE+BE=12,
∵AE⊥BC,
∴ ,
设 ,则 ,
∵ ,
∴ ,
解得: ,即 ,
∴ .
【点睛】
本题主要考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,熟练掌握菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理是解题的关键.
6.(1)见解析;
(2)
【解析】
【分析】
(1)根据平行四边形的性质得到,证明△AOF≌△BOE,推出AF=BE,证得四边形ABEF是平行四边形,由AE平分∠BAD,推出AB=BE,由此得到结论;
(2)过点O作OG⊥BC于G,由C的中点,求出BE,根据菱形的性质得到OE=2,∠OEB=60°,求出GE=1,勾股定理求出OG得到GC,再利用勾股定理求出答案.
(1)
证明:在中,,
∴∠FAO=∠BEO,
∵O为AE的中点,
∴AO=EO,
∵∠AOF=∠BOE,
∴△AOF≌△BOE,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AE平分∠BAD,
∴∠BAE=∠FAE,
∴∠BAE=∠AEB,
∴AB=BE,
∴四边形ABEF是菱形;
(2)
解:过点O作OG⊥BC于G,
∵点E为BC的中点,且BC=8,
∴BE=CE=4,
∵四边形ABEF是菱形,∠ABC=60°,
∴∠OBE=30°,∠BOE=90°,
∴OE=2,∠OEB=60°,
∴GE=1,,
∴GC=5,
∴OC.
.
【点睛】
此题考查了平行四边形的性质,全等三角形的判定及性质,勾股定理,菱形的判定及性质,直角三角形30度角的性质,解题的关键是熟练掌握各知识点并熟练应用.
7.(1)证明见解析;(2)73°.
【解析】
【分析】
(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;
(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴,,
∵,
∴,
∵°,,
∴,
在和中,
,
∴,
∴;
(2)解:∵BE⊥BF,
∴,
又∵,
∴,
∵四边形ABCD是正方形,
∴,
∵,
∴,
∴.
∴的值为.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.
8.(1)见解析
(2)①见解析;②,证明见解析
【解析】
【分析】
(1)根据正方形性质可得,,进而可证明,依据全等三角形性质即可证得结论;
(2)①按题目要求补全图形即可;
②连接,根据平移性质即可得出四边形是平行四边形,根据平行四边形性质得,,再由,可得,,进而可得出,,由勾股定理即可得出结论.
(1)
解:如图1,
四边形是正方形,
,,
在和中,
,
,
,,
,
,
,
,
故,且;
(2)
解:①补全图如图2所示;
②理由如下:
如图3,连接,
线段沿平移至,
四边形是平行四边形,
,,
在和中,
,
,
,,
,
,
,
,
,
,
,
,
.
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平移的性质、勾股定理的应用,解题的关键是掌握全等三角形的判定定理和性质定理、正方形的性质定理.
9.(1)证明见解析;(2)S平行四边形ABCD =24
【解析】
【分析】
(1)利用全等三角形的性质证明AB=AD即可解决问题;
(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;
【详解】
(1)∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∵BE=DF,
∴△AEB≌△AFD,
∴AB=AD,
∴四边形ABCD是菱形;
(2)连接BD交AC于O,
∵四边形ABCD是菱形,AC=6,
∴AC⊥BD,
AO=OC=AC=×6=3,
∵AB=5,AO=3,
∴BO===4,
∴BD=2BO=8,
∴S平行四边形ABCD=×AC×BD=24.
【点睛】
本题考查了菱形的判定和性质、勾股定理、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.
10.(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
【详解】
(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180× =45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
11.(1)2-;(2)2-;(3)3-4.
【解析】
【分析】
(1)求出,根据勾股定理求出,即可求出;
(2)求出,根据全等三角形的性质得出即可;
(3)延长交于,证,得出比例式,代入即可求出答案.
【详解】
解:(1)∵四边形ABCD是正方形,
∴∠ABC=∠ADC=90°,
∠DBC=∠BCA=∠ACD=45°,
∵CE平分∠DCA,
∴∠ACE=∠DCE=∠ACD=22.5°,
∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,
∵∠DBC=45°,
∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,
∴BE=BC=,
在Rt△ACD中,由勾股定理得:BD==2,
∴DE=BD﹣BE=2﹣;
(2)∵FE⊥CE,
∴∠CEF=90°,
∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,
∵∠FBE=∠CDE=45°,BE=BC=CD,
∴△FEB≌△ECD,
∴BF=DE=2﹣;
(3)延长GE交AB于F,
由(2)知:DE=BF=2﹣,
由(1)知:BE=BC=,
∵四边形ABCD是正方形,
∴AB∥DC,
∴△DGE∽△BFE,
∴=,
∴=,
解得:DG=3﹣4.
【点睛】
本题考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键,题目比较好,难度偏大.
12.(1)见解析;(2)MN =2.
【解析】
【分析】
(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2,HM=4,再根据勾股定理得OM=2 ,由直角三角形性质知MN=OM=2.
【详解】
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为4,
∴OH=HA=2,
∵E为OM的中点,
∴HM=4,
则OM==2,
∴MN=OM=2.
【点睛】
本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
13.(1)证明见解析;(2)8.
【解析】
【分析】
(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;
(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.
【详解】
(1)∵四边形EFGH是矩形,
∴EH=FG,EH∥FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE;
(2)连接EG,
∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E为AD中点,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE∥BG,
∴四边形ABGE是平行四边形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周长=8.
【点睛】
本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.
14.(1)证明见解析;(2)EG2=GF•AF.理由见解析;(3)BE=.
【解析】
【分析】
(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD-GH求解即可.
【详解】
(1)证明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四边形EFDG为菱形.
(2)EG2=GF•AF.
理由:如图1所示:连接DE,交AF于点O.
∵四边形EFDG为菱形,
∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴,即DF2=FO•AF.
∵FO=GF,DF=EG,
∴EG2=GF•AF.
(3)如图2所示:过点G作GH⊥DC,垂足为H.
∵EG2=GF•AF,AG=6,EG=2,
∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,FG=﹣10(舍去).
∵DF=GE=2,AF=10,
∴AD==4.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴,即=.
∴GH=.
∴BE=AD﹣GH=4﹣=.
【点睛】
本题考查了四边形的综合问题,熟练掌握四边形的性质、判定定理等相关知识点是本题解题的关键.
15.(1)证明见解析(2)证明见解析(3)当BE⊥CD时,∠EFD=∠BCD
【解析】
【分析】
(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;
(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;
(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.
【详解】
(1)证明:在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∴△ABF≌△ADF(SAS),
∴∠AFB=∠AFD,
∵∠CFE=∠AFB,
∴∠AFD=∠CFE,
∴∠BAC=∠DAC,∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)BE⊥CD时,∠BCD=∠EFD;理由如下:
∵四边形ABCD是菱形,
∴BC=CD,∠BCF=∠DCF,
∵CF=CF,
∴△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠BCD=∠EFD.
16.(1)证明见解析;(2)平行四边形,理由见解析;(3)45°
【解析】
【分析】
(1)由平行四边形的性质得出∠OAF=∠OCE,OA=OC,进而判断出△AOF≌△COE,即可得出结论;
(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;
(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.
【详解】
(1)证明:在▱ABCD中,AD∥BC,
∴∠OAF=∠OCE,
∵OA=OC,∠AOF=∠COE,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)当旋转角为90°时,四边形ABEF是平行四边形,理由:
∵AB⊥AC,
∴∠BAC=90°,
∵∠AOF=90°,
∴∠BAC=∠AOF,
∴AB∥EF,
∵AF∥BE,
∴四边形ABEF是平行四边形;
(3)在Rt△ABC中,AB=1,BC=,
∴AC==2,
∴OA=1=AB,
∴△ABO是等腰直角三角形,
∴∠AOB=45°,
∵BF=DF,
∴△BFD是等腰三角形,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OF⊥BD(等腰三角形底边上的中线是底边上的高),
∴∠BOF=90°,
∴∠α=∠AOF=∠BOF﹣∠AOB=45°.
【点睛】
此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.
17.(1)证明见试题解析;(2).
【解析】
【分析】
(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;
(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.
【详解】
解:(1)证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,
∵FG∥CD,
∴∠2=∠3,
∴FG=FE,
∴DG=GF=EF=DE,
∴四边形DEFG为菱形;
(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,
在Rt△EFC中,,即,
解得:x=5,CE=8﹣x=3,
∴=.
考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.
18.(1);(2)见详解.
【解析】
【分析】
(1)由题意,先证明△BDE是等腰直角三角形,然后利用等腰三角形的性质和勾股定理,即可求出答案;
(2)在AD上取一点M,使得DM=DE,连接MG,然后根据全等三角形的判定和性质,得到AM=BF,即可得到答案.
【详解】
解:(1)如图,点B、G、D在同一直线上,
∵DG、BG分别是∠ADE与∠CBF的角平分线,且∠CBF=90°,
∴∠CBD=45°,
∵AD∥BC,
∴∠ADB=∠CBD=45°,
∴∠BDE=∠ADB=45°,
∴∠BED=,
∴三角形BDE是等腰直角三角形,,
在平行四边形ABCD中,则BD=DG,
∴线段EG是等腰直角三角形BDE的中线,
∴EG⊥BD,
∵,
∴,
在直角三角形CDE中,由勾股定理得
;
(2)如图,在AD上取一点M,使得DM=DE,连接MG,
在△DMG和△DEG中,有
,
∴△DMG≌△DEG,
∴∠DMG=∠DEG=∠BCD,
∵∠BCD=∠BAD,
∴∠DMG=∠BAD,
∴MG∥AB,
∴∠BAF=∠AGM,
∵AG=AB,
∴∠AGB=∠ABG,
∵∠ABG=∠ABF+∠FBG,∠AGB=∠GBC+∠BCG,
又∵∠FBG=∠GBC,
∴∠ABF=∠BCG,
∵AD∥BC,
∴∠BCG=∠MAG=∠ABF,
在△AMG和△BFA中,有
∴,
∴△AMG≌△BFA,
∴AM=BF,
∴AD=AM+MD=BF+DE.
【点睛】
本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,解题的关键是熟练掌握所学的知识,解题的关键是正确的作出辅助线,构造全等三角形进行证明.
19.(1)12;96 (2)答案见解析 (3)答案见解析
【解析】
【分析】
(1)根据菱形的对角线互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根据AC=2AG计算即可得解;再根据菱形的面积等于对角线乘积的一半列式计算即可得解;
(2)连接AO,根据S△ABD=S△ABO+S△ADO列式计算即可得解;
(3)连接AO,根据S△ABD=S△ABO-S△ADO列式整理即可得解.
【详解】
解:(1)在菱形ABCD中,AG=CG,AC⊥BD,BG=BD=×16=8,
由勾股定理得AG=,
所以AC=2AG=2×6=12.
所以菱形ABCD的面积=AC·BD=×12×16=96.
(2)不发生变化.理由如下:如图①,连接AO,则S△ABD=S△ABO+S△AOD,
所以BD·AG=AB·OE+AD·OF,
即×16×6=×10·OE+×10·OF.
解得OE+OF=9.6,是定值,不变.
(3)发生变化.如图②,连接AO,则S△ABD=S△ABO-S△AOD,
所以BD·AG=AB·OE-AD·OF.
即×16×6=×10·OE-×10·OF.
解得OE-OF=9.6,是定值,不变.
所以OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.
【点睛】
本题主要考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,(2)(3)作辅助线构造出两个三角形是解题的关键.
20.(1)3,3;(2)t=2s时,EP把四边形BCDE的周长平分;(3)当t=s或s或5s时,△BPQ的面积等于6cm2.
【解析】
【分析】
(1)根据偶次方和绝对值的非负性求解即可;
(2)先求出四边形BCDE的周长为18cm,则BE+BP=9cm,进一步可得BP=4cm即可;
(3)分P在BC上、相遇前点P在CD上和相遇后点P在CD上三种情况,根据三角形的面积公式可求解即可.
【详解】
解:(1)∵(a﹣3)2+|2a+b﹣9|=0,
∴a﹣3=0,2a+b﹣9=0,
∴a=3,b=3;
故答案为:3,3;
(2)∵AE=3cm,DE=3cm,
∴AD=AE+DE=6cm=BC,
∴C四边形BCDE=BC+CD+DE+EB=18cm,
∵EP把四边形BCDE的周长平分,
∴BE+BP=9cm,
∴点P在BC上,BP=4cm,
∴t==2s;
(3)解:①如图:点P在BC上
∴t=
∴0<t≤3,BP=2t,在BP边上的高为4
∴S△BPQ=×2t×4=6,
∴t=;
②相遇前,点P在CD上(3<t≤),
∴PQ=4﹣(t﹣3)﹣(2t﹣6),在PQ边上的高为6
∵S△BPQ=×[(4﹣(t﹣3)﹣(2t﹣6)]×6=6,
∴t=;
③如图:相遇后,点P在CD上(<t≤5),
∴PQ=t﹣3)+(2t﹣6)﹣4,PQ边上的高为4
∵S△BPQ=×[(t﹣3)+(2t﹣6)﹣4]×6=6,
∴t=5;
∴综上所述,当t=s或s或5s时,△BPQ的面积等于6cm2.
【点睛】
本题考查了非负性的应用、矩形的性质以及动点问题,掌握分类讨论思想和动点问题的解答思路是解答本题的关键.
21.(1)见解析;(2)见解析;(3)EF最大值: ,EF最小值:1
【解析】
【分析】
(1)过B点作BH∥MN交CD于H,则AP⊥BH,根据平行四边形和正方形的性质求证△ABP≌△BCH(ASA),然后根据三角形全等的性质即可证明;
(2)根据垂直平分线的性质和正方形的性质求得FP=FC,然后根据等边对等角和等量代换求得∠AFP=90°,根据直角三角形斜边中线的性质得到FE=AP,结合(1)问结论即可求证;
(3)根据(2)问结论得到EF=MN,当点P和点B重合时,EF有最小值;当点P和C重合时,EF有最大值,根据正方形的对角线即可求解.
【详解】
(1)如图1,过B点作BH∥MN交CD于H,则AP⊥BH,
∵BM∥NH,
∴四边形MBHN为平行四边形,
∴MN=BH,
∵四边形ABCD是正方形.
∴AB=BC,∠ABP=90°=∠C,
∴∠CBH+∠ABH=∠BAP+∠ABH=90°,
∴∠BAP=∠CBH,
∴△ABP≌△BCH(ASA),
∴BH=AP,
∴MN=AP;
(2)如图2,连接FA,FP,FC
∵正方形ABCD是轴对称图形,F为对角线BD上一点,
∴FA=FC,
又∵FE垂直平分AP,
∴FA=FP,
∴FP=FC,
∴∠FPC=∠FCP,
∵∠FAB=∠FCP,
∴∠FAB=∠FPC,
∴∠FAB+∠FPB=180°,
∴∠ABC+∠AFP=180°,
∴∠AFP=90°,
∴FE=AP,
由(1)知,AP=MN,
∴MN=ME+EF+FN=AP=2EF,
∴EF=ME+FN;
(3)由(2)有,EF=ME+FN,
∵MN=EF+ME+NF,
∴EF=MN,
∵AC,BD是正方形的对角线,
∴BD=2,
当点P和点B重合时,EF最小值=MN=AB=1,
当点P和C重合时,EF最大值=MN=BD=.
【点睛】
本题考查了平行四边形的判定和性质,正方形的性质,三角形全等的判定和性质,等腰三角形的性质,本题考查较为综合,题目较难,熟练掌握各部分定理和性质是本题的关键.
22.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.
【解析】
【详解】
试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;
(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;
(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.
试题解析:(1)上述结论①,②仍然成立,理由是:
∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;
(2)上述结论①,②仍然成立,理由是:
∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;
(3)四边形MNPQ是正方形.理由是:
如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,
∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.
初中数学第四章 几何图形初步4.3 角4.3.1 角练习: 这是一份初中数学<a href="/sx/tb_c88483_t7/?tag_id=28" target="_blank">第四章 几何图形初步4.3 角4.3.1 角练习</a>,共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题训练一 特殊的平行四边形专题强化必刷精选题(34道)八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版): 这是一份专题训练一 特殊的平行四边形专题强化必刷精选题(34道)八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版),共46页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题强化 一次(正比例)函数、方程和不等式综合性问题高分必刷题八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版): 这是一份专题强化 一次(正比例)函数、方程和不等式综合性问题高分必刷题八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版),共40页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。