年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年高考数学真题类汇编:07平面解析几何知识点分类

    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      2022年高考数学真题类汇编:07平面解析几何知识点分类 (原卷版).docx
    • 解析
      2022年高考数学真题类汇编:07平面解析几何知识点分类 (解析版).docx
    2022年高考数学真题类汇编:07平面解析几何知识点分类 (原卷版)第1页
    2022年高考数学真题类汇编:07平面解析几何知识点分类 (原卷版)第2页
    2022年高考数学真题类汇编:07平面解析几何知识点分类 (解析版)第1页
    2022年高考数学真题类汇编:07平面解析几何知识点分类 (解析版)第2页
    还剩2页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年高考数学真题类汇编:07平面解析几何知识点分类

    展开

    这是一份2022年高考数学真题类汇编:07平面解析几何知识点分类,文件包含2022年高考数学真题类汇编07平面解析几何知识点分类原卷版docx、2022年高考数学真题类汇编07平面解析几何知识点分类解析版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
    07平面解析几何知识点分类 一.方程组解的个数与两直线的位置关系(共1小题)1.(2022•上海)若关于xy的方程组有无穷多解,则实数m的值为      二.圆的标准方程(共2小题)2.(2022•甲卷)设点M在直线2x+y﹣1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为      3.(2022•乙卷)过四点(0,0),(4,0),(﹣1,1),(4,2)中的三点的一个圆的方程为      三.圆的切线方程(共1小题)4.(2022•新高考Ⅰ)写出与圆x2+y2=1和(x﹣3)2+(y﹣4)2=16都相切的一条直线的方程      四.直线与圆的位置关系(共2小题)5.(2022•北京)若直线2x+y﹣1=0是圆(xa2+y2=1的一条对称轴,则a=(  )A. B. C.1 D.﹣16.(2022•新高考Ⅱ)设点A(﹣2,3),B(0,a),若直线AB关于ya对称的直线与圆(x+3)2+(y+2)2=1有公共点,则a的取值范围是      五.椭圆的性质(共3小题)7.(2022•甲卷)椭圆C+=1(ab>0)的左顶点为A,点PQ均在C上,且关于y轴对称.若直线APAQ的斜率之积为,则C的离心率为(  )A. B. C. D.8.(2022•甲卷)已知椭圆C+=1(ab>0)的离心率为A1A2分别为C的左、右顶点,BC的上顶点.若=﹣1,则C的方程为(  )A.+=1 B.+=1 C.+=1 D.+y2=19.(2022•新高考Ⅱ)已知直线l与椭圆+=1在第一象限交于AB两点,lx轴、y轴分别相交于MN两点,且|MA|=|NB|,|MN|=2,则l的方程为      六.抛物线的性质(共2小题)10.(2022•乙卷)设F为抛物线Cy2=4x的焦点,点AC上,点B(3,0),若|AF|=|BF|,则|AB|=(  )A.2 B.2 C.3 D.3(多选)11.(2022•新高考Ⅱ)已知O为坐标原点,过抛物线Cy2=2pxp>0)焦点F的直线与C交于AB两点,其中A在第一象限,点Mp,0).若|AF|=|AM|,则(  )A.直线AB的斜率为2 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°七.双曲线的性质(共5小题)(多选)12.(2022•乙卷)双曲线C的两个焦点为F1F2,以C的实轴为直径的圆记为D,过F1D的切线与C交于MN两点,且cos∠F1NF2,则C的离心率为(  )A. B. C. D.13.(2022•浙江)已知双曲线=1(a>0,b>0)的左焦点为F,过F且斜率为的直线交双曲线于点Ax1y1),交双曲线的渐近线于点Bx2y2)且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是      14.(2022•北京)已知双曲线y2+=1的渐近线方程为y=±x,则m     15.(2022•甲卷)记双曲线C=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2xC无公共点”的e的一个值      16.(2022•上海)已知P1x1y1),P2x2y2)两点均在双曲线Γ:y2=1(a>0)的右支上,若x1x2y1y2恒成立,则实数a的取值范围为      八.直线与圆锥曲线的综合(共1小题)17.(2022•浙江)如图,已知椭圆+y2=1.设AB是椭圆上异于P(0,1)的两点,且点Q(0,)在线段AB上,直线PAPB分别交直线y=﹣x+3于CD两点.(Ⅰ)求点P到椭圆上点的距离的最大值;(Ⅱ)求|CD|的最小值.九.圆与圆锥曲线的综合(共1小题)18.(2022•甲卷)若双曲线y2=1(m>0)的渐近线与圆x2+y2﹣4y+3=0相切,则m     一十.直线与椭圆的综合(共4小题)19.(2022•新高考Ⅰ)已知椭圆C+=1(ab>0),C的上顶点为A,两个焦点为F1F2,离心率为.过F1且垂直于AF2的直线与C交于DE两点,|DE|=6,则△ADE的周长是      20.(2022•乙卷)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,﹣2),B,﹣1)两点.(1)求E的方程;(2)设过点P(1,﹣2)的直线交EMN两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.21.(2022•北京)已知椭圆E+=1(ab>0)的一个顶点为A(0,1),焦距为2(Ⅰ)求椭圆E的方程;(Ⅱ)过点P(﹣2,1)作斜率为k的直线与椭圆E交于不同的两点BC,直线ABAC分别与x轴交于点MN.当|MN|=2时,求k的值.22.(2022•上海)已知椭圆Γ:+y2=1(a>1),AB两点分别为Γ的左顶点、下顶点,CD两点均在直线lxa上,且C在第一象限.(1)设F是椭圆Γ的右焦点,且∠AFB,求Γ的标准方程;(2)若CD两点纵坐标分别为2、1,请判断直线AD与直线BC的交点是否在椭圆Γ上,并说明理由;(3)设直线ADBC分别交椭圆Γ于点P、点Q,若PQ关于原点对称,求|CD|的最小值.一十一.直线与双曲线的综合(共2小题)23.(2022•新高考Ⅰ)已知点A(2,1)在双曲线C=1(a>1)上,直线lCPQ两点,直线APAQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2,求△PAQ的面积.24.(2022•新高考Ⅱ)已知双曲线C=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±x(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于AB两点,点Px1y1),Qx2y2)在C上,且x1x2>0,y1>0.过P且斜率为﹣的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.MAB上;②PQAB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.一十二.直线与抛物线的综合(共2小题)(多选)25.(2022•新高考Ⅰ)已知O为坐标原点,点A(1,1)在抛物线Cx2=2pyp>0)上,过点B(0,﹣1)的直线交CPQ两点,则(  )A.C的准线为y=﹣1 B.直线ABC相切 C.|OP|•|OQ|>|OA|2 D.|BP|•|BQ|>|BA|226.(2022•甲卷)设抛物线Cy2=2pxp>0)的焦点为F,点Dp,0),过F的直线交CMN两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MDNDC的另一个交点分别为AB,记直线MNAB的倾斜角分别为α,β.当α﹣β取得最大值时,求直线AB的方程.

    相关试卷

    专题07 平面解析几何(选择题、填空题)(学生版)2021-2023年高考数学真题分类汇编(全国通用):

    这是一份专题07 平面解析几何(选择题、填空题)(学生版)2021-2023年高考数学真题分类汇编(全国通用),共9页。试卷主要包含了若直线是圆的一条对称轴,则,双曲线的左、右焦点分别为,等内容,欢迎下载使用。

    2021_2023年高考数学真题分类汇编专题07平面解析几何填空题:

    这是一份2021_2023年高考数学真题分类汇编专题07平面解析几何填空题,共17页。试卷主要包含了若双曲线的渐近线与圆相切,则,已知椭圆,焦点,,,双曲线的右焦点到直线的距离为等内容,欢迎下载使用。

    2021_2023年高考数学真题分类汇编专题07平面解析几何选择题:

    这是一份2021_2023年高考数学真题分类汇编专题07平面解析几何选择题,共21页。试卷主要包含了若直线是圆的一条对称轴,则,双曲线的左、右焦点分别为,,已知,,,函数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map