


03实验题&计算题知识点分类+-湖南省三年(2020-2022)高考物理真题分类汇编
展开
这是一份03实验题&计算题知识点分类+-湖南省三年(2020-2022)高考物理真题分类汇编,共41页。试卷主要包含了,Q端在y轴上等内容,欢迎下载使用。
03实验题&计算题知识点分类 -湖南省三年(2020-2022)高考物理真题分类汇编
一.匀变速直线运动规律的综合运用(共1小题)
1.(2020•新课标Ⅰ)我国自主研制了运﹣20重型运输机。飞机获得的升力大小F可用F=kv2描写,k为系数;v是飞机在平直跑道上的滑行速度,F与飞机所受重力相等时的v称为飞机的起飞离地速度。已知飞机质量为1.21×105kg时,起飞离地速度为66m/s;装载货物后质量为1.69×105kg,装载货物前后起飞离地时的k值可视为不变。
(1)求飞机装载货物后的起飞离地速度;
(2)若该飞机装载货物后,从静止开始匀加速滑行1521m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。
二.受力分析的应用(共1小题)
2.(2022•湖南)如图,两个定值电阻的阻值分别为R1和R2,直流电源的内阻不计,平行板电容器两极板水平放置,板间距离为d,板长为d,极板间存在方向水平向里的匀强磁场。质量为m、带电量为+q的小球以初速度v沿水平方向从电容器下板左侧边缘A点进入电容器,做匀速圆周运动,恰从电容器上板右侧边缘离开电容器。此过程中,小球未与极板发生碰撞,重力加速度大小为g,忽略空气阻力。
(1)求直流电源的电动势E0;
(2)求两极板间磁场的磁感应强度B;
(3)在图中虚线的右侧设计一匀强电场,使小球离开电容器后沿直线运动,求电场强度的最小值E′。
三.动量定理(共2小题)
3.(2020•新课标Ⅰ)某同学用如图所示的实验装置验证动量定理,所用器材包括:气垫导轨、滑块(上方安装有宽度为d的遮光片)、两个与计算机相连接的光电门、砝码盘和砝码等。
实验步骤如下:
(1)开动气泵,调节气垫导轨,轻推滑块,当滑块上的遮光片经过两个光电门的遮光时间 时,可认为气垫导轨水平;
(2)用天平测砝码与砝码盘的总质量m1、滑块(含遮光片)的质量m2;
(3)用细线跨过轻质定滑轮将滑块与砝码盘连接,并让细线水平拉动滑块;
(4)令滑块在砝码和砝码盘的拉动下从左边开始运动,和计算机连接的光电门能测量出遮光片经过A、B两处的光电门的遮光时间Δt1、Δt2及遮光片从A运动到B所用的时间t12;
(5)在遮光片随滑块从A运动到B的过程中,如果将砝码和砝码盘所受重力视为滑块所受拉力,拉力冲量的大小I= ,滑块动量改变量的大小Δp= ;(用题中给出的物理量及重力加速度g表示)
(6)某一次测量得到的一组数据为:d=1.000cm,m1=1.50×10﹣2kg,m2=0.400kg,Δt1=3.900×10﹣2s,Δt2=1.270×10﹣2s,t12=1.50s,取g=9.80m/s2.计算可得I= N•s,Δp= kg•m•s﹣1;(结果均保留3位有效数字)
(7)定义δ=||×100%,本次实验Δ= %(保留1位有效数字)。
4.(2022•湖南)如图(a),质量为m的篮球从离地H高度处由静止下落,与地面发生一次非弹性碰撞后反弹至离地h的最高处。设篮球在运动过程中所受空气阻力的大小是篮球所受重力的λ倍(λ为常数且0<λ<),且篮球每次与地面碰撞的碰后速率与碰前速率之比相同,重力加速度大小为g。
(1)求篮球与地面碰撞的碰后速率与碰前速率之比;
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中h0已知,求F0的大小;
(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。
四.动量守恒定律(共1小题)
5.(2021•湖南)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ。质量为m的小物块A与水平轨道间的动摩擦因数为μ。以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上。重力加速度为g。
(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;
(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;
(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围。
五.理想气体的状态方程(共2小题)
6.(2022•湖南)如图,小赞同学设计了一个液体拉力测量仪。一个容积V0=9.9L的导热汽缸下接一圆管,用质量m1=90g、横截面积S=10cm2的活塞封闭一定质量的理想气体,活塞与圆管壁间摩擦不计。活塞下端用轻质细绳悬挂一质量m2=10g的U形金属丝,活塞刚好处于A位置。将金属丝部分浸入待测液体中,缓慢升起汽缸,使金属丝从液体中拉出,活塞在圆管中的最低位置为B。已知A、B间距离h=10cm,外界大气压强p0=1.01×105Pa,重力加速度取10m/s2,环境温度保持不变。求
(ⅰ)活塞处于A位置时,汽缸中的气体压强p1;
(ⅱ)活塞处于B位置时,液体对金属丝拉力F的大小。
7.(2021•湖南)小赞同学设计了一个用电子天平测量环境温度的实验装置,如图所示。导热汽缸开口向上并固定在桌面上,用质量m1=600g、截面积S=20cm2的活塞封闭一定质量的理想气体,活塞与汽缸壁间无摩擦。一轻质直杆中心置于固定支点A上,左端用不可伸长的细绳竖直悬挂活塞,右端用相同细绳竖直悬挂一个质量m2=1200g的铁块,并将铁块放置到电子天平上。当电子天平示数为600.0g时,测得环境温度T1=300K。设外界大气压强p0=1.0×105Pa,重力加速度g=10m/s2,轻杆始终保持水平。
(i)当电子天平示数为400.0g时,环境温度T2为多少?
(ii)该装置可测量的最高环境温度Tmax为多少?
六.气体的等温变化(共1小题)
8.(2020•新课标Ⅰ)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后
(i)两罐中气体的压强;
(ii)甲罐中气体的质量与甲罐中原有气体的质量之比。
七.带电粒子在匀强电场中的运动(共1小题)
9.(2020•新课标Ⅰ)在一柱形区域内有匀强电场,柱的横截面是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°.运动中粒子仅受电场力作用。
(1)求电场强度的大小;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?
(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?
八.带电粒子在匀强磁场中的运动(共1小题)
10.(2021•湖南)带电粒子流的磁聚焦和磁控束是薄膜材料制备的关键技术之一。带电粒子流(每个粒子的质量为m、电荷量为+q)以初速度v垂直进入磁场,不计重力及带电粒子之间的相互作用。对处在xOy平面内的粒子,求解以下问题。
(1)如图(a),宽度为2r1的带电粒子流沿x轴正方向射入圆心为A(0,r1)、半径为r1的圆形匀强磁场中,若带电粒子流经过磁场后都汇聚到坐标原点O,求该磁场磁感应强度B1的大小;
(2)如图(a),虚线框为边长等于2r2的正方形,其几何中心位于C(0,﹣r2)。在虚线框内设计一个区域面积最小的匀强磁场,使汇聚到O点的带电粒子流经过该区域后宽度变为2r2,并沿x轴正方向射出。求该磁场磁感应强度B2的大小和方向,以及该磁场区域的面积(无需写出面积最小的证明过程);
(3)如图(b),虚线框Ⅰ和Ⅱ均为边长等于r3的正方形,虚线框Ⅲ和Ⅳ均为边长等于r4的正方形。在Ⅰ、Ⅱ、Ⅲ和Ⅳ中分别设计一个区域面积最小的匀强磁场,使宽度为2r3的带电粒子流沿x轴正方向射入Ⅰ和Ⅱ后汇聚到坐标原点O,再经过Ⅲ和Ⅳ后宽度变为2r4,并沿x轴正方向射出,从而实现带电粒子流的同轴控束。求Ⅰ和Ⅲ中磁场磁感应强度的大小,以及Ⅱ和Ⅳ中匀强磁场区域的面积(无需写出面积最小的证明过程)。
九.波的干涉现象(共1小题)
11.(2020•新课标Ⅰ)一振动片以频率f做简谐振动时,固定在振动片上的两根细杆同步周期性地触动水面上a、b两点,两波源发出的波在水面上形成稳定的干涉图样。c是水面上的一点,a、b、c间的距离均为l,如图所示。已知除c点外,在ac连线上还有其他振幅极大的点,其中距c最近的点到c的距离为l.求
(i)波的波长;
(ii)波的传播速度。
一十.光的折射定律(共2小题)
12.(2022•湖南)如图,某种防窥屏由透明介质和对光完全吸收的屏障构成,其中屏障垂直于屏幕平行排列,可实现对像素单元可视角度θ的控制(可视角度θ定义为某像素单元发出的光在图示平面内折射到空气后最大折射角的2倍)。透明介质的折射率n=2,屏障间隙L=0.8mm。发光像素单元紧贴屏下,位于相邻两屏障的正中间。不考虑光的衍射。
(ⅰ)若把发光像素单元视为点光源,要求可视角度θ控制为60°,求屏障的高度d;
(ⅱ)若屏障高度d=1.0mm,且发光像素单元的宽度不能忽略,求像素单元宽度x最小为多少时,其可视角度θ刚好被扩为180°(只要看到像素单元的任意一点,即视为能看到该像素单元)。
13.(2021•湖南)我国古代著作《墨经》中记载了小孔成倒像的实验,认识到光沿直线传播。身高1.6m的人站在水平地面上,其正前方0.6m处的竖直木板墙上有一个圆柱形孔洞,直径为1.0cm、深度为1.4cm,孔洞距水平地面的高度是人身高的一半。此时,由于孔洞深度过大,使得成像不完整,如图所示。现在孔洞中填充厚度等于洞深的某种均匀透明介质,不考虑光在透明介质中的反射。
(i)若该人通过小孔能成完整的像,透明介质的折射率最小为多少?
(ii)若让掠射进入孔洞的光能成功出射,透明介质的折射率最小为多少?
一十一.探究弹力和弹簧伸长的关系(共1小题)
14.(2022•湖南)小圆同学用橡皮筋、同种一元硬币、刻度尺、塑料袋、支架等,设计了如图(a)所示的实验装置,测量冰墩墩玩具的质量。主要实验步骤如下:
(1)查找资料,得知每枚硬币的质量为6.05g;
(2)将硬币以5枚为一组逐次加入塑料袋,测量每次稳定后橡皮筋的长度l,记录数据如下表:
序号
1
2
3
4
5
硬币数量n/枚
5
10
15
20
25
长度l/cm
10.51
12.02
13.54
15.05
16.56
(3)根据表中数据在图(b)上描点,绘制图线;
(4)取出全部硬币,把冰墩墩玩具放入塑料袋中,稳定后橡皮筋长度的示数如图(c)所示,此时橡皮筋的长度为 cm;
(5)由上述数据计算得冰墩墩玩具的质量为 g(计算结果保留3位有效数字)。
一十二.探究加速度与物体质量、物体受力的关系(共1小题)
15.(2021•湖南)某实验小组利用图(a)所示装置探究加速度与物体所受合外力的关系。主要实验步骤如下:
(1)用游标卡尺测量垫块厚度h,示数如图(b)所示,h= cm;
(2)接通气泵,将滑块轻放在气垫导轨上,调节导轨至水平;
(3)在右支点下放一垫块,改变气垫导轨的倾斜角度;
(4)在气垫导轨合适位置释放滑块,记录垫块个数n和滑块对应的加速度a;
(5)在右支点下增加垫块个数(垫块完全相同),重复步骤(4),记录数据如下表:
n
1
2
3
4
5
6
(a/m•s﹣2)
0.087
0.180
0.260
0.425
0.519
根据表中数据在图(c)上描点,绘制图线。
如果表中缺少的第4组数据是正确的,其应该是 m/s2(保留三位有效数字)。
一十三.测定电源的电动势和内阻(共1小题)
16.(2021•湖南)某实验小组需测定电池的电动势和内阻,器材有:一节待测电池、一个单刀双掷开关、一个定值电阻(阻值为R0)、一个电流表(内阻为RA)、一根均匀电阻丝(电阻丝总阻值大于R0,并配有可在电阻丝上移动的金属夹)、导线若干。由于缺少刻度尺,无法测量电阻丝长度,但发现桌上有一个圆形时钟表盘。某同学提出将电阻丝绕在该表盘上,利用圆心角来表示接入电路的电阻丝长度。主要实验步骤如下:
(1)将器材如图(a)连接;
(2)开关闭合前,金属夹应夹在电阻丝的 端(填“a”或“b”);
(3)改变金属夹的位置,闭合开关,记录每次接入电路的电阻丝对应的圆心角θ和电流表示数I,得到多组数据;
(4)整理数据并在坐标纸上描点绘图,所得图像如图(b)所示,图线斜率为k,与纵轴截距为d,设单位角度对应电阻丝的阻值为r0,该电池电动势和内阻可表示为E= ,r= ;(用R0、RA、k、d、r0表示)
(5)为进一步确定结果,还需要测量单位角度对应电阻丝的阻值r0。利用现有器材设计实验,在图(c)方框中画出实验电路图(电阻丝用滑动变阻器符号表示);
(6)利用测出的r0,可得该电池的电动势和内阻。
一十四.多用电表的原理和使用(共1小题)
17.(2022•湖南)小梦同学自制了一个两挡位(“×1”“×10”)的欧姆表,其内部结构如图所示,R0为调零电阻(最大阻值为R0m),Rs、Rm、Rn为定值电阻(Rs+R0m<Rm<Rn),电流计Ⓖ的内阻为RG(Rs<<RG)。用此欧姆表测量一待测电阻的阻值,回答下列问题:
(1)短接①②,将单刀双掷开关S与m接通,电流计Ⓖ示数为Im;保持电阻R0滑片位置不变,将单刀双掷开关S与n接通,电流计Ⓖ示数变为In,则Im In(填“大于”或“小于”);
(2)将单刀双掷开关S与n接通,此时欧姆表的挡位为 (填“×1”或“×10”);
(3)若从“×1”挡位换成“×10”挡位,调整欧姆零点(欧姆零点在电流计Ⓖ满偏刻度处)时,调零电阻R0的滑片应该 调节(填“向上”或“向下”);
(4)在“×10”挡位调整欧姆零点后,在①②间接入阻值为100Ω的定值电阻R1,稳定后电流计Ⓖ的指针偏转到满偏刻度的;取走R1,在①②间接入待测电阻Rx,稳定后电流计Ⓖ的指针偏转到满偏刻度的,则Rx= Ω。
一十五.伏安法测电阻(共1小题)
18.(2020•新课标Ⅰ)某同学用伏安法测量一阻值为几十欧姆的电阻Rx,所用电压表的内阻为1kΩ,电流表内阻为0.5Ω.该同学采用两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间。测量得到如图(b)所示的两条U﹣I图线,其中U与I分别为电压表和电流表的示数。回答下列问题:
(1)图(b)中标记为Ⅱ的图线是采用电压表跨接在 (填“O、P”或“O、Q”)两点的方案测量得到的。
(2)根据所用实验器材和图(b)可判断,由图线 (填“Ⅰ”或“Ⅱ”)得到的结果更接近待测电阻的真实值,结果为 Ω(保留1位小数)。
(3)考虑到实验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为 Ω(保留1位小数)。
参考答案与试题解析
一.匀变速直线运动规律的综合运用(共1小题)
1.(2020•新课标Ⅰ)我国自主研制了运﹣20重型运输机。飞机获得的升力大小F可用F=kv2描写,k为系数;v是飞机在平直跑道上的滑行速度,F与飞机所受重力相等时的v称为飞机的起飞离地速度。已知飞机质量为1.21×105kg时,起飞离地速度为66m/s;装载货物后质量为1.69×105kg,装载货物前后起飞离地时的k值可视为不变。
(1)求飞机装载货物后的起飞离地速度;
(2)若该飞机装载货物后,从静止开始匀加速滑行1521m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。
【解答】解:(1)令飞机装载货物前的起飞速度为v1,飞机的质量为m
离地时有,
代入数据解得k=N•s2/m2,
令飞机装载货物后的质量为m′,飞机的起飞速度为v2,
则当飞机起飞时有,
则v2=78m/s;
(2)根据运动学公式可知,飞机在滑行过程中加速度的大小为a==2m/s2,
所用时间为t==39s。
答:(1)飞机装载货物后的起飞离地速度为78m/s;
(2)若该飞机装载货物后,从静止开始匀加速滑行1521m起飞离地,飞机在滑行过程中加速度的大小为2m/s2,所用的时间为39s。
二.受力分析的应用(共1小题)
2.(2022•湖南)如图,两个定值电阻的阻值分别为R1和R2,直流电源的内阻不计,平行板电容器两极板水平放置,板间距离为d,板长为d,极板间存在方向水平向里的匀强磁场。质量为m、带电量为+q的小球以初速度v沿水平方向从电容器下板左侧边缘A点进入电容器,做匀速圆周运动,恰从电容器上板右侧边缘离开电容器。此过程中,小球未与极板发生碰撞,重力加速度大小为g,忽略空气阻力。
(1)求直流电源的电动势E0;
(2)求两极板间磁场的磁感应强度B;
(3)在图中虚线的右侧设计一匀强电场,使小球离开电容器后沿直线运动,求电场强度的最小值E′。
【解答】解:(1)小球做在叠加场中做匀速圆周运动,则小球受到的重力和电场力等大反向,洛伦兹力提供向心力
即qE=mg
根据欧姆定律可知,极板间的电压为:
结合场强的计算公式:
U=Ed
联立解得:E0=
(2)小球做圆周运动,画出小球的运动轨迹图如下图所示:
根据几何关系可得:
r2=3d2+(r﹣d)2
解得:r=2d
根据牛顿第二定律得:
联立解得:B=
(3)根据上述分析可知,小球离开极板时的速度方向与竖直方程成30°夹角
为了保证小球离开电容器沿直线运动,可知小球的合力与速度反向,结合几何关系可知
qE′=mgsinθ
解得:E'=
答:(1)求直流电源的电动势为;
(2)求两极板间磁场的磁感应强度为;
(3)电场强度的最小值为。
三.动量定理(共2小题)
3.(2020•新课标Ⅰ)某同学用如图所示的实验装置验证动量定理,所用器材包括:气垫导轨、滑块(上方安装有宽度为d的遮光片)、两个与计算机相连接的光电门、砝码盘和砝码等。
实验步骤如下:
(1)开动气泵,调节气垫导轨,轻推滑块,当滑块上的遮光片经过两个光电门的遮光时间 大约相等 时,可认为气垫导轨水平;
(2)用天平测砝码与砝码盘的总质量m1、滑块(含遮光片)的质量m2;
(3)用细线跨过轻质定滑轮将滑块与砝码盘连接,并让细线水平拉动滑块;
(4)令滑块在砝码和砝码盘的拉动下从左边开始运动,和计算机连接的光电门能测量出遮光片经过A、B两处的光电门的遮光时间Δt1、Δt2及遮光片从A运动到B所用的时间t12;
(5)在遮光片随滑块从A运动到B的过程中,如果将砝码和砝码盘所受重力视为滑块所受拉力,拉力冲量的大小I= m1gt12 ,滑块动量改变量的大小Δp= m2( ﹣) ;(用题中给出的物理量及重力加速度g表示)
(6)某一次测量得到的一组数据为:d=1.000cm,m1=1.50×10﹣2kg,m2=0.400kg,Δt1=3.900×10﹣2s,Δt2=1.270×10﹣2s,t12=1.50s,取g=9.80m/s2.计算可得I= 0.221 N•s,Δp= 0.212 kg•m•s﹣1;(结果均保留3位有效数字)
(7)定义δ=||×100%,本次实验Δ= 4 %(保留1位有效数字)。
【解答】解:(1)气垫导轨水平时,不考虑摩擦力时,滑块所受的合外力为零,此时滑块做匀速直线运动,而两个光电门的宽度都为d,根据t=得遮光片经过两个光电门的遮光时间相等,实际实验中,会存在摩擦力使得滑块做的运动近似为匀速直线运动,故遮光片经过两个光电门的遮光时间大约相等;
(5)在遮光片随滑块从A运动到B的过程中,拉力的大小等于砝码和砝码盘所受重力,故F=m1g,而遮光片从A运动到B所用的时间为t12,故拉力冲量的大小I=Ft12=m1gt12;
由于光电门的宽度d很小,所以我们用经过光电门的平均速度代替滑块经过A、B两处的瞬时速度,故滑块经过A时的瞬时速度v,滑块经过B时的瞬时速度vB=,故滑块动量改变量的大小△p=m2(vB﹣vA)=m2( ﹣);
(6)I=m1gt12=1.50×10﹣2×9.8×1.50N•s=0.221N•s;
△p=m2( ﹣)=0.4×(﹣)kg•m•s﹣1=0.212kg•m•s﹣1;
(7)δ=||×100%=||×100%=4%;
故答案为:(1)大约相等;(5)m1gt12;m2( ﹣);(6)0.221;0.212;(7)4
4.(2022•湖南)如图(a),质量为m的篮球从离地H高度处由静止下落,与地面发生一次非弹性碰撞后反弹至离地h的最高处。设篮球在运动过程中所受空气阻力的大小是篮球所受重力的λ倍(λ为常数且0<λ<),且篮球每次与地面碰撞的碰后速率与碰前速率之比相同,重力加速度大小为g。
(1)求篮球与地面碰撞的碰后速率与碰前速率之比;
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中h0已知,求F0的大小;
(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。
【解答】解:(1)篮球在下落过程中,根据牛顿第二定律可知:
根据速度—位移公式可得篮球与地面的碰前速度为:
篮球反弹的过程中,根据牛顿第二定律得:
根据速度—位移公式可得篮球与地面的碰后速率为:
因此
k==
(2)篮球反弹到最高点时,运动员对篮球施加一个向下的力,根据动能定理得:
根据(1)问的描述可知,篮球落地反弹的速度为
v4=kv3
在反弹上升的过程中,根据动能定理可得:
联立解得:F0=
(3)由(1)问的分析可知,篮球上升和下降过程的加速度分别为
a1=(1﹣λ)g(方向向下)
a2=(1+λ)g(方向向上)
因为拍打的时间极短,重力的冲量可忽略不计,则根据动量定理可知
I=mv
即每次拍打篮球都会给篮球一个速度v。
拍打第一次下降过程中
上升过程中有
将k代入上升过程的式子化简得:
联立解得:
拍打第二次,同理可得:
下降过程中
上升过程中代入k后得
联立得:
将h1代入到h2得:
拍打第三次,同理可得:
下降过程有
上升过程代入k值化简得:
联立解得:
再将h2代入到h3得:
拍打第N次时,同理可得:
下降过程有
上升过程代入k值得:
联立有
将hN﹣1代入hN后有
其中,hN=H,h0=h
则有
[]
则有I=mv'=m
答:(1)篮球与地面碰撞的碰后速率与碰前速率之比为;
(2)F0的大小为;
(3)冲量I的大小为m。
四.动量守恒定律(共1小题)
5.(2021•湖南)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ。质量为m的小物块A与水平轨道间的动摩擦因数为μ。以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上。重力加速度为g。
(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;
(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;
(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围。
【解答】解:(1)设物块A由静止开始运动到O点的速度大小为v0,对此过程由动能定理得
mg•2μL﹣μmgL=﹣0
解得:v0=
(2)A经O点水平抛出后做平抛运动,设水平位移为x,竖直位移为y,物块A经过O点的速度大小为vx,落到弧形轨道上时,速度大小为v,竖直方向速度大小为vy,落在弧形轨道上的动能均相同为Ek,则
x=vxt,y=,,
解得:
Ek===
已知P点坐标为(2μL,μL),即当物块A落到P点时,x=2μL,y=μL,可得
Ek==2μmgL
依题意:物块A落在弧形轨道上的动能均相同,则有
=2μmgL,
整理得PQ的曲线方程为:,0≤x≤2μL。
(3)设A下滑的初始位置距x轴高度为h,A与B碰撞前瞬间速度大小为vA,碰撞后瞬间A、B的分别为vA1、vB,
对A由静止开始运动到碰撞B之前的过程,由动能定理得
mgh﹣μmgL=
解得vA=
A与B发生弹性碰撞的过程,设水平向右为正方向,因B质量为λm(λ≥5)大于A的质量,碰后A的速度水平向左,由动量守恒定律和机械能守恒定律,可得
mvA=﹣mvA1+λmvB
=+
解得:vA1=,vB=
设碰撞之后A向左运动再返回O点的速度大小为vA2,对此过程由动能定理得
﹣2μmgL=﹣
解得:=﹣4μgL=﹣4μgL
要使A落在B落点的右侧,需满足:vA2>vB,即,则有
﹣4μgL>,
解得:>
将vA=代入得:
h>
由(2)的结论:,可得当物体落在P(2μL,μL)点时,在O点平抛的初速度大小满足
要使A和B均能落在弧形轨道上,因vA2>vB,故只要A能落在弧形轨道上,B就一定能落在弧形轨道上,
所以需满足:≤,即:﹣4μgL≤2μgL
解得:h≤
则A下滑的初始位置距x轴高度的取值范围为<h≤。
答:(1)A经过O点时的速度大小为;
(2)PQ的曲线方程为,0≤x≤2μL;
(3)A下滑的初始位置距x轴高度的取值范围为<h≤。
五.理想气体的状态方程(共2小题)
6.(2022•湖南)如图,小赞同学设计了一个液体拉力测量仪。一个容积V0=9.9L的导热汽缸下接一圆管,用质量m1=90g、横截面积S=10cm2的活塞封闭一定质量的理想气体,活塞与圆管壁间摩擦不计。活塞下端用轻质细绳悬挂一质量m2=10g的U形金属丝,活塞刚好处于A位置。将金属丝部分浸入待测液体中,缓慢升起汽缸,使金属丝从液体中拉出,活塞在圆管中的最低位置为B。已知A、B间距离h=10cm,外界大气压强p0=1.01×105Pa,重力加速度取10m/s2,环境温度保持不变。求
(ⅰ)活塞处于A位置时,汽缸中的气体压强p1;
(ⅱ)活塞处于B位置时,液体对金属丝拉力F的大小。
【解答】解:(ⅰ)活塞处于A位置时,根据活塞处于静止状态可知
p1S+(m1+m2)g=p0S,
代入数据解得p1=1.0×105Pa,
(ⅱ)活塞处于B位置时,根据活塞封闭一定质量的理想气体做等温变化,
p1V0=p2(V0+Sh)
p2=p0﹣
联立解得F=1N
答:(ⅰ)活塞处于A位置时,汽缸中的气体压强p1为1.0×105Pa,
(ⅱ)活塞处于B位置时,液体对金属丝拉力F的大小为1N。
7.(2021•湖南)小赞同学设计了一个用电子天平测量环境温度的实验装置,如图所示。导热汽缸开口向上并固定在桌面上,用质量m1=600g、截面积S=20cm2的活塞封闭一定质量的理想气体,活塞与汽缸壁间无摩擦。一轻质直杆中心置于固定支点A上,左端用不可伸长的细绳竖直悬挂活塞,右端用相同细绳竖直悬挂一个质量m2=1200g的铁块,并将铁块放置到电子天平上。当电子天平示数为600.0g时,测得环境温度T1=300K。设外界大气压强p0=1.0×105Pa,重力加速度g=10m/s2,轻杆始终保持水平。
(i)当电子天平示数为400.0g时,环境温度T2为多少?
(ii)该装置可测量的最高环境温度Tmax为多少?
【解答】解:(i)轻质直杆中心置于固定支点A上,根据杠杆原理可知,两根细绳上的拉力相等。
对铁块受力分析如图所示:
电子天平示数为600g时,气体p1=p0=1×105Pa,T1=300K,
示数为400g时,p2=p0+,
其中,拉力F=m2g﹣m0g,
其中m0=400g=0.4kg,m1=600g=0.6kg,m2=1200g=1.2kg,
解得F=8N
由=,代入数据解得T2=297K
(ii)当拉力F=0时,p3=p0+,代入解得p3=1.03×105Pa,
则=,
解得Tmax=T3=309K.
答:(i)当电子天平示数为400.0g时,环境温度T2为297K;
(ii)该装置可测量的最高环境温度Tmax为309K.
六.气体的等温变化(共1小题)
8.(2020•新课标Ⅰ)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后
(i)两罐中气体的压强;
(ii)甲罐中气体的质量与甲罐中原有气体的质量之比。
【解答】解:(i)对两罐中的甲、乙气体,气体发生等温变化,根据玻意耳定律有:
pV+=p′•3V
解得甲乙中气体最终压强为:p′=
(ii)若调配后将甲气体再等温压缩到气体原来的压强为p,根据玻意耳定律得:p′V=pV′
计算可得:
由密度定律解得质量之比等于:==
答:(i)两罐中气体的压强为;
(ii)甲罐中气体的质量与甲罐中原有气体的质量之比为。
七.带电粒子在匀强电场中的运动(共1小题)
9.(2020•新课标Ⅰ)在一柱形区域内有匀强电场,柱的横截面是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°.运动中粒子仅受电场力作用。
(1)求电场强度的大小;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?
(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?
【解答】解:(1)粒子初速度为零,由C点射出电场,故电场方向与AC平行,由A指向C。
由几何关系和电场强度的定义知:
AC=R…①
F=qE…②
由动能定理得
F•AC=…③
联立①②③解得 E=…④
(2)如图,由几何关系知AC⊥BC,故电场中的等势线与BC平行。作与BC平行的直线与圆相切于D点,与AC的延长线交于P点,则自D点从圆周上穿出的粒子的动能增量最大。
由几何关系知
∠PAD=30°,AP=R,DP=R…⑤
设粒子以速度v1进入电场时动能增量最大,在电场中运动的时间为t1,粒子在AC方向做加速度为a的匀加速运动,运动的距离等于AP;在垂直于AC方向上做匀速运动,运动的距离等于DP,由牛顿第二定律和运动学公式有:
F=ma ⑥
AP=⑦
DP=v1t1⑧
联立②④⑤⑥⑦⑧式得 v1=⑨
(3)设粒子以速度v进入电场时,在电场中运动的时间为t。以A为原点,粒子进入电场的方向为x轴正方向,电场方向为y轴正方向建立直角坐标系,由运动学公式有:
y= (10)
x=vt (11)
粒子离开电场的位置在圆周上,有
(x﹣R)2+(y﹣R)2=R2 (12)
粒子在电场中运动时,其x方向的动量不变,y方向的初动量为零,设穿过电场前后动量变化量的大小为mv0的粒子,离开电场时其y方向的速度分量为v2,由题给条件及运动学公式有:
mv2=mv0=mat (13)
联立②④⑥(10)(11)(12)(13)式得:
v=0
或 v=
另解:
由题意知,初速度为0时,动量增量大小为mv0,此即问题的一个解。
自A点以不同的速率垂直于电场方向射入电场的粒子,沿y方向位移相等时,所用时间都相同,因此,不同粒子运动到线段CB上时,动量变化量都相同,自B点射出电场的粒子,其动量变化也为mv0,由几何关系和运动学规律可得,此时入射速率v=。
答:(1)电场强度的大小为;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为。
(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为0或。
八.带电粒子在匀强磁场中的运动(共1小题)
10.(2021•湖南)带电粒子流的磁聚焦和磁控束是薄膜材料制备的关键技术之一。带电粒子流(每个粒子的质量为m、电荷量为+q)以初速度v垂直进入磁场,不计重力及带电粒子之间的相互作用。对处在xOy平面内的粒子,求解以下问题。
(1)如图(a),宽度为2r1的带电粒子流沿x轴正方向射入圆心为A(0,r1)、半径为r1的圆形匀强磁场中,若带电粒子流经过磁场后都汇聚到坐标原点O,求该磁场磁感应强度B1的大小;
(2)如图(a),虚线框为边长等于2r2的正方形,其几何中心位于C(0,﹣r2)。在虚线框内设计一个区域面积最小的匀强磁场,使汇聚到O点的带电粒子流经过该区域后宽度变为2r2,并沿x轴正方向射出。求该磁场磁感应强度B2的大小和方向,以及该磁场区域的面积(无需写出面积最小的证明过程);
(3)如图(b),虚线框Ⅰ和Ⅱ均为边长等于r3的正方形,虚线框Ⅲ和Ⅳ均为边长等于r4的正方形。在Ⅰ、Ⅱ、Ⅲ和Ⅳ中分别设计一个区域面积最小的匀强磁场,使宽度为2r3的带电粒子流沿x轴正方向射入Ⅰ和Ⅱ后汇聚到坐标原点O,再经过Ⅲ和Ⅳ后宽度变为2r4,并沿x轴正方向射出,从而实现带电粒子流的同轴控束。求Ⅰ和Ⅲ中磁场磁感应强度的大小,以及Ⅱ和Ⅳ中匀强磁场区域的面积(无需写出面积最小的证明过程)。
【解答】解:(1)利用圆形区域匀强磁场实现对带电粒子流的磁聚焦,需要满足:粒子匀速圆周运动半径与圆形磁场区域的半径相等,设粒子做匀速圆周运动的半径为R1,则有R1=r1,
粒子匀速圆周运动所需向心力等于洛伦兹力,则有:qvB1=m
解得:B1=
(2)在磁场B1中汇聚到O点的带电粒子进入磁场B2后,射出后变为宽度为2r2平行粒子束,此为磁聚焦的逆过程(磁控束),粒子运动轨迹如右图中红色轨迹,则可知需要的区域面积最小的匀强磁场应为以出射的粒子流的宽度为直径的圆形区域磁场,如右图中蓝色圆形区域,设粒子匀速圆周运动半径为R2,需要的最小圆形磁场区域半径为r2′,则有R2=r2′=r2,
粒子做匀速圆周运动所需向心力等于洛伦兹力,则有:qvB2=m,
解得:B2=,
带正电粒子在磁场B2中做逆时针匀速圆周运动,由左手定则判断,磁感应强度B2的方向为垂直xOy平面向里,
该磁场区域的面积S==
(3)进入区域Ⅰ的粒子经磁聚焦由O点进入区域Ⅳ经磁控束后离开磁场;同理,进入区域Ⅱ的粒子经磁聚焦由O点进入区域Ⅲ经磁控束后离开磁场,则可知在区域Ⅰ和区域Ⅱ中的圆形磁场区域半径为r3,粒子匀速圆周运动半径也为r3,同理,在区域Ⅲ和区域Ⅳ中的圆形磁场区域半径为r4,粒子匀速圆周运动半径也为r4,如右图所示,各区域中的蓝色圆弧为最小区域磁场边界,红色圆弧为入射或出射时离x轴距离最远的粒子运动轨迹,则各区域需要的磁场区域最小面积为蓝色圆弧与红色圆弧围成的区域面积。
设区域Ⅰ中磁场的磁感应强度为B3,则有:qvB3=m
解得:B3=
设区域Ⅲ中磁场的磁感应强度为B4,则有:qvB4=
解得:B4=
区域Ⅱ中匀强磁场区域的面积S2=2()=
区域Ⅳ中匀强磁场区域的面积S4=2()=
答:(1)该磁场磁感应强度B1的大小为;
(2)该磁场磁感应强度B2的大小为,方向为垂直xOy平面向里,以及该磁场区域的面积为;
(3)Ⅰ和Ⅲ中磁场磁感应强度的大小分别为和,以及Ⅱ和Ⅳ中匀强磁场区域的面积分别为和。
九.波的干涉现象(共1小题)
11.(2020•新课标Ⅰ)一振动片以频率f做简谐振动时,固定在振动片上的两根细杆同步周期性地触动水面上a、b两点,两波源发出的波在水面上形成稳定的干涉图样。c是水面上的一点,a、b、c间的距离均为l,如图所示。已知除c点外,在ac连线上还有其他振幅极大的点,其中距c最近的点到c的距离为l.求
(i)波的波长;
(ii)波的传播速度。
【解答】解:(i)如图所示,
设距c点最近的振幅极大的点为d点,a与d的距离为r1,b与d的距离为r2,d与c的距离为s,波长为λ,
则有:r2﹣r1=λ
由几何关系,则有:r1=l﹣s
且s=1
及
联立上式,代入数据,解得:λ=,
(ii)波的频率为f,设波的传播速度为v,则有:v=λf
解得:v=
答:(i)波的波长是;
(ii)波的传播速度为。
一十.光的折射定律(共2小题)
12.(2022•湖南)如图,某种防窥屏由透明介质和对光完全吸收的屏障构成,其中屏障垂直于屏幕平行排列,可实现对像素单元可视角度θ的控制(可视角度θ定义为某像素单元发出的光在图示平面内折射到空气后最大折射角的2倍)。透明介质的折射率n=2,屏障间隙L=0.8mm。发光像素单元紧贴屏下,位于相邻两屏障的正中间。不考虑光的衍射。
(ⅰ)若把发光像素单元视为点光源,要求可视角度θ控制为60°,求屏障的高度d;
(ⅱ)若屏障高度d=1.0mm,且发光像素单元的宽度不能忽略,求像素单元宽度x最小为多少时,其可视角度θ刚好被扩为180°(只要看到像素单元的任意一点,即视为能看到该像素单元)。
【解答】解:(ⅰ)当可视角度θ=60°时,由题意可知最大折射角为=30°,光路图如图1所示,设对应的最大入射角为α,由折射定律得:
代入数据解得:sinα=
可得:tanα=
由题意可知发光像素到屏障的距离为,则由图中几何关系得:
代入数据解得:d=0.4mm≈1.55mm。
(ⅱ)依题意当可视角度θ=180°时,可知最大折射角为=90°,设对应的最大入射角为β,由折射定律得
代入数据解得:sinβ=,可得:β=30°
作出光路图如图2所示,像素单元的右端点a恰好掠过左侧屏障的上端之后射出,像素单元的左端点e恰好掠过右侧屏障的上端之后射出,则ae的长度为像素单元宽度x最小值。
由图中几何关系得像素单元的右端点a到左侧屏障的距离为:
ab=d•tanβ=1.0×tan30°mm=mm
由对称性可知像素单元的左端点e到右侧屏障的距离ef与ab相等,则像素单元宽度x最小值为:
xmin=2ab﹣L=2×mm﹣0.8mm≈0.35mm。
答:(ⅰ)屏障的高度d为1.55mm;
(ⅱ)像素单元宽度x最小为0.35mm时,其可视角度θ刚好被扩为180°。
13.(2021•湖南)我国古代著作《墨经》中记载了小孔成倒像的实验,认识到光沿直线传播。身高1.6m的人站在水平地面上,其正前方0.6m处的竖直木板墙上有一个圆柱形孔洞,直径为1.0cm、深度为1.4cm,孔洞距水平地面的高度是人身高的一半。此时,由于孔洞深度过大,使得成像不完整,如图所示。现在孔洞中填充厚度等于洞深的某种均匀透明介质,不考虑光在透明介质中的反射。
(i)若该人通过小孔能成完整的像,透明介质的折射率最小为多少?
(ii)若让掠射进入孔洞的光能成功出射,透明介质的折射率最小为多少?
【解答】解:(i)若该人通过小孔能成完整的像,作出的光路图如图1所示(根据对称性可知,只要头部能够在后面成像,则脚也一定能够成像),
根据几何关系可得:sinα=,
其中AC==0.8m,DE=1.0cm=0.01m,BO=0.6m
sinβ=,其中OD=1.4cm=0.014m
根据折射定律可得:n=
代入数据解得:n=1.37;
(ii)若让掠射进入孔洞的光能成功出射,折射率最小时光的传播情况如图2所示;
根据几何关系可得α′=90°,sinβ′=sinβ
根据折射定律可得:n′=
解得:n′=1.72。
答:(i)若该人通过小孔能成完整的像,透明介质的折射率最小为1.37;
(ii)若让掠射进入孔洞的光能成功出射,透明介质的折射率最小为1.72。
一十一.探究弹力和弹簧伸长的关系(共1小题)
14.(2022•湖南)小圆同学用橡皮筋、同种一元硬币、刻度尺、塑料袋、支架等,设计了如图(a)所示的实验装置,测量冰墩墩玩具的质量。主要实验步骤如下:
(1)查找资料,得知每枚硬币的质量为6.05g;
(2)将硬币以5枚为一组逐次加入塑料袋,测量每次稳定后橡皮筋的长度l,记录数据如下表:
序号
1
2
3
4
5
硬币数量n/枚
5
10
15
20
25
长度l/cm
10.51
12.02
13.54
15.05
16.56
(3)根据表中数据在图(b)上描点,绘制图线;
(4)取出全部硬币,把冰墩墩玩具放入塑料袋中,稳定后橡皮筋长度的示数如图(c)所示,此时橡皮筋的长度为 15.35 cm;
(5)由上述数据计算得冰墩墩玩具的质量为 133 g(计算结果保留3位有效数字)。
【解答】解:(3)将表中的数据描于坐标纸上,用一条直线尽可能多地穿过更多的点,不在直线上的点尽量均匀分布在直线两侧,误差较大的点舍去,画出的l﹣n图像如下图所示:
(4)刻度尺的分度值为0.1cm,需要估读到下一位,则橡皮筋的长度为15.35cm;
(5)根据上述表格可知,当橡皮筋的长度为15.35cm时,对应的横轴坐标约为22枚,结合题目中的数据可知,冰墩墩玩具的质量为m=22×6.05g=133g。
故答案为:(3)如上图所示;(4)15.35;(5)133
一十二.探究加速度与物体质量、物体受力的关系(共1小题)
15.(2021•湖南)某实验小组利用图(a)所示装置探究加速度与物体所受合外力的关系。主要实验步骤如下:
(1)用游标卡尺测量垫块厚度h,示数如图(b)所示,h= 1.02 cm;
(2)接通气泵,将滑块轻放在气垫导轨上,调节导轨至水平;
(3)在右支点下放一垫块,改变气垫导轨的倾斜角度;
(4)在气垫导轨合适位置释放滑块,记录垫块个数n和滑块对应的加速度a;
(5)在右支点下增加垫块个数(垫块完全相同),重复步骤(4),记录数据如下表:
n
1
2
3
4
5
6
(a/m•s﹣2)
0.087
0.180
0.260
0.425
0.519
根据表中数据在图(c)上描点,绘制图线。
如果表中缺少的第4组数据是正确的,其应该是 0.345 m/s2(保留三位有效数字)。
【解答】解:(1)游标卡尺的精度为0.1mm,游标卡尺的示数为主尺与游标尺的示数之和,所以h=10mm+2×0.1mm=10.2mm=1.02cm;
(2)由表中的数据在坐标系中先描点,再过这些点画一条直线,如图所示。
根据实验过程知,在已经调水平后,放n个垫块的加速度a=gsinθ==,结合绘制的a﹣n图象可求得图角的斜率k==0.0862m/s2,那么当n=4时,a4=4k=4×0.0862m/s2=0.345m/s2。
故答案为:(1)1.02;(2)如上图、0.345
一十三.测定电源的电动势和内阻(共1小题)
16.(2021•湖南)某实验小组需测定电池的电动势和内阻,器材有:一节待测电池、一个单刀双掷开关、一个定值电阻(阻值为R0)、一个电流表(内阻为RA)、一根均匀电阻丝(电阻丝总阻值大于R0,并配有可在电阻丝上移动的金属夹)、导线若干。由于缺少刻度尺,无法测量电阻丝长度,但发现桌上有一个圆形时钟表盘。某同学提出将电阻丝绕在该表盘上,利用圆心角来表示接入电路的电阻丝长度。主要实验步骤如下:
(1)将器材如图(a)连接;
(2)开关闭合前,金属夹应夹在电阻丝的 b 端(填“a”或“b”);
(3)改变金属夹的位置,闭合开关,记录每次接入电路的电阻丝对应的圆心角θ和电流表示数I,得到多组数据;
(4)整理数据并在坐标纸上描点绘图,所得图像如图(b)所示,图线斜率为k,与纵轴截距为d,设单位角度对应电阻丝的阻值为r0,该电池电动势和内阻可表示为E= ,r= ﹣R0﹣RA ;(用R0、RA、k、d、r0表示)
(5)为进一步确定结果,还需要测量单位角度对应电阻丝的阻值r0。利用现有器材设计实验,在图(c)方框中画出实验电路图(电阻丝用滑动变阻器符号表示);
(6)利用测出的r0,可得该电池的电动势和内阻。
【解答】解:(2)由图(a)所示电路图可知,电阻丝串联接入电路,为保护电路,开关闭合前,金属夹应夹在电阻丝的b端。
(4)由图(a)所示电路图,根据闭合电路的欧姆定律得:E=I(r+R0+θr0+RA)
整理得:=θ+,
由图(b)所示﹣θ图象可知,图线的斜率k=,纵轴截距d=,
解得,电池电动势E=,电池内阻r=﹣R0﹣RA;
(5)可以用等效法测单位角度对应电阻丝的阻值r0,电池、电流表、单刀双掷开关、电阻丝、定值电阻组成实验电路如图所示;
先把单刀双掷开关接1,读出电流表示数I,然后把单刀双掷开关接2,改变金属夹的位置直到电流表示数为I,读出此时金属丝接入电路对应的角度θ;
由闭合电路的欧姆定律得:I=,I=,解得,金属丝接入电路的阻值:R=R0,单位角度对应电阻丝的阻值r0=;
故答案为:(2)b;(4);﹣R0﹣RA;(5)实验电路图如图所示。
一十四.多用电表的原理和使用(共1小题)
17.(2022•湖南)小梦同学自制了一个两挡位(“×1”“×10”)的欧姆表,其内部结构如图所示,R0为调零电阻(最大阻值为R0m),Rs、Rm、Rn为定值电阻(Rs+R0m<Rm<Rn),电流计Ⓖ的内阻为RG(Rs<<RG)。用此欧姆表测量一待测电阻的阻值,回答下列问题:
(1)短接①②,将单刀双掷开关S与m接通,电流计Ⓖ示数为Im;保持电阻R0滑片位置不变,将单刀双掷开关S与n接通,电流计Ⓖ示数变为In,则Im 大于 In(填“大于”或“小于”);
(2)将单刀双掷开关S与n接通,此时欧姆表的挡位为 ×10 (填“×1”或“×10”);
(3)若从“×1”挡位换成“×10”挡位,调整欧姆零点(欧姆零点在电流计Ⓖ满偏刻度处)时,调零电阻R0的滑片应该 向上 调节(填“向上”或“向下”);
(4)在“×10”挡位调整欧姆零点后,在①②间接入阻值为100Ω的定值电阻R1,稳定后电流计Ⓖ的指针偏转到满偏刻度的;取走R1,在①②间接入待测电阻Rx,稳定后电流计Ⓖ的指针偏转到满偏刻度的,则Rx= 400 Ω。
【解答】解:(1)在保持电阻R0滑片位置不变的情况下,因Rm<Rn,开关S由与m接通变为与n接通后,干路电流变小,由并联电路分流性质可知电流计Ⓖ示数变小,故Im 大于In;
(2)欧姆表的中值电阻为内电阻,“×1”挡的内电阻小于“×10”挡的内电阻,故将单刀双掷开关S与n接通,此时欧姆表的挡位为“×10”;
(3)若从“×1”挡位换成“×10”挡位,总电阻增大,通过电流表的电流减小;要想进行欧姆调零,需要使电流表电流增大,所以调零电阻R0的滑片应该向上滑动,时的电流表所在的支路电阻减小、电流增大;
(3)在①②间接入阻值为100Ω的定值电阻R1,根据闭合电路的欧姆定律可得:=
在①②间接入待测电阻Rx,稳定后电流计Ⓖ的指针偏转到满偏刻度的,则有:=
当①②间短路时,有:Ig=
联立解得:Rx=400Ω。
故答案为:(1)大于;(2)×10;(3)向上;(4)400。
一十五.伏安法测电阻(共1小题)
18.(2020•新课标Ⅰ)某同学用伏安法测量一阻值为几十欧姆的电阻Rx,所用电压表的内阻为1kΩ,电流表内阻为0.5Ω.该同学采用两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间。测量得到如图(b)所示的两条U﹣I图线,其中U与I分别为电压表和电流表的示数。回答下列问题:
(1)图(b)中标记为Ⅱ的图线是采用电压表跨接在 O、P (填“O、P”或“O、Q”)两点的方案测量得到的。
(2)根据所用实验器材和图(b)可判断,由图线 Ⅰ (填“Ⅰ”或“Ⅱ”)得到的结果更接近待测电阻的真实值,结果为 50.5 Ω(保留1位小数)。
(3)考虑到实验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为 50.0 Ω(保留1位小数)。
【解答】解:(1)当电压表跨接在O、P两点时,电流表外接,电压准确,电流测量值为电阻与电压表电流之和,由得电阻测量值偏小;电压表跨接在O、Q两点时,电流表内接,电流准确,电压测量值为电阻与电流表电压之和,电阻测量值偏大;U﹣I图象的斜率大小等于电阻测量值,因此图线Ⅱ为电压表跨接在O、P两点测量得到的。
(2)由图线斜率可得I图线测得电阻值为:RⅠ=Ω≈50.5Ω,图线II测得电阻阻值为RⅡ=≈47.7Ω,被测电阻值约为50Ω,==20,==100,因<,电流表采用内接法,电压表跨接在O、Q两点,测量结果为50.5Ω。
(3)电压表跨接在O、Q间,测得的阻值为电阻与电流表电阻之和,则有:R=R1﹣RA=50.5Ω﹣0.5Ω=50.0Ω。
故答案为:(1)O、P;(2)Ⅰ,50.5(50.3~50.9);(3)50.0(49.8~50.4)。
相关试卷
这是一份云南高考物理三年(2020-2022)模拟题知识点分类汇编-24力学实验题,共30页。试卷主要包含了实验题等内容,欢迎下载使用。
这是一份近三年2020-2022高考物理真题按题型分类汇编-填空题、实验题(含解析),共29页。试卷主要包含了填空题,实验题等内容,欢迎下载使用。
这是一份02多选题知识点分类-湖南省三年(2020-2022)高考物理真题分类汇编,共26页。