终身会员
搜索
    上传资料 赚现金

    2021-2022学年东王营中学中考数学模拟试题含解析

    立即下载
    加入资料篮
    2021-2022学年东王营中学中考数学模拟试题含解析第1页
    2021-2022学年东王营中学中考数学模拟试题含解析第2页
    2021-2022学年东王营中学中考数学模拟试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年东王营中学中考数学模拟试题含解析

    展开

    这是一份2021-2022学年东王营中学中考数学模拟试题含解析,共24页。试卷主要包含了答题时请按要求用笔,函数的自变量x的取值范围是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为(   )
    A.0.3 B.0.4 C.0.5 D.0.6
    2.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )

    A.120° B.110° C.100° D.80°
    3.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )

    A.50° B.20° C.60° D.70°
    4.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是

    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    5.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于(  )

    A.12.5° B.15° C.20° D.22.5°
    6.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是(  )

    A.10 B. C. D.15
    7.函数的自变量x的取值范围是( )
    A. B. C. D.
    8.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为(  )

    A.125° B.135° C.145° D.155°
    9.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )

    A.2+ B.2+2 C.4 D.3
    10.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )

    A.6 B.8
    C.10 D.12
    二、填空题(共7小题,每小题3分,满分21分)
    11.若一组数据1,2,3,的平均数是2,则的值为______.
    12.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.
    13.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .
    14.在数轴上与所对应的点相距4个单位长度的点表示的数是______.
    15.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.

    16.如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是 _______.

    17.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
    (1)求证:四边形AGDH为菱形;
    (2)若EF=y,求y关于x的函数关系式;
    (3)连结OF,CG.
    ①若△AOF为等腰三角形,求⊙O的面积;
    ②若BC=3,则CG+9=______.(直接写出答案).

    19.(5分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:

    (1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
    (2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
    (3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
    20.(8分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
    (Ⅰ)如图①,求OD的长及的值;
    (Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
    ①在旋转过程中,当∠BAG′=90°时,求α的大小;
    ②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).

    21.(10分)化简:(x-1- )÷.
    22.(10分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:
    (1)求该区抽样调查人数;
    (2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;
    (3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?

    23.(12分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
    求反比例函数的表达式和一次函数表达式;
    若点C是y轴上一点,且,直接写出点C的坐标.

    24.(14分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
    (1)如图,若m=﹣,n=,点B的纵坐标为,
    ①求k的值;
    ②作线段CD,使CD∥AB且CD=AB,并简述作法;
    (2)若四边形ABCD为矩形,A的坐标为(1,5),
    ①求m,n的值;
    ②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是   .




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
    【详解】
    仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
    所以,频率==0.1.
    故选C.
    【点睛】
    本题考查了频数与频率,频率=.
    2、D
    【解析】
    先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
    【详解】
    ∵∠DCF=100°,
    ∴∠DCE=80°,
    ∵AB∥CD,
    ∴∠AEF=∠DCE=80°.
    故选D.
    【点睛】
    本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    3、D
    【解析】
    题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    4、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.

    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    5、B
    【解析】
    解:连接OB,
    ∵四边形ABCO是平行四边形,
    ∴OC=AB,又OA=OB=OC,
    ∴OA=OB=AB,
    ∴△AOB为等边三角形,
    ∵OF⊥OC,OC∥AB,
    ∴OF⊥AB,
    ∴∠BOF=∠AOF=30°,
    由圆周角定理得∠BAF=∠BOF=15°
    故选:B

    6、C
    【解析】
    A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
    【详解】
    A,C之间的距离为6,
    2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
    在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
    ∴m=6,
    2020﹣2017=3,故点Q与点P的水平距离为3,

    解得k=6,
    双曲线
    1+3=4,
    即点Q离x轴的距离为,

    ∵四边形PDEQ的面积是.
    故选:C.
    【点睛】
    考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
    7、D
    【解析】
    根据二次根式的意义,被开方数是非负数.
    【详解】
    根据题意得,
    解得.
    故选D.
    【点睛】
    本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负数.
    8、A
    【解析】
    分析:如图求出∠5即可解决问题.
    详解:

    ∵a∥b,
    ∴∠1=∠4=35°,
    ∵∠2=90°,
    ∴∠4+∠5=90°,
    ∴∠5=55°,
    ∴∠3=180°-∠5=125°,
    故选:A.
    点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.
    9、B
    【解析】
    分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.
    详解:∵DE垂直平分AB,
    ∴BE=AE,
    ∴AE+CE=BC=2,
    ∴△ACE的周长=AC+AE+CE=AC+BC=2+2,
    故选B.
    点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    10、D
    【解析】
    根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.
    【详解】
    解:∵四边形ABCD为正方形,

    ∴AB=CD,AB∥CD,
    ∴∠ABF=∠GDF,∠BAF=∠DGF,
    ∴△ABF∽△GDF,
    ∴=2,
    ∴AF=2GF=4,
    ∴AG=2.
    ∵AD∥BC,DG=CG,
    ∴=1,
    ∴AG=GE
    ∴AE=2AG=1.
    故选:D.
    【点睛】
    本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据这组数据的平均数是1和平均数的计算公式列式计算即可.
    【详解】
    ∵数据1,1,3,的平均数是1,
    ∴,
    解得:.
    故答案为:1.
    【点睛】
    本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
    12、1
    【解析】
    先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.
    【详解】

    解得
    所以可以取
    故答案为:1.
    【点睛】
    本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.
    13、 (-1,-2)
    【解析】
    试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,
    根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),
    故答案为(﹣1,﹣2).
    考点:二次函数的性质.
    14、2或﹣1
    【解析】
    解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.
    点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.
    15、π﹣1.
    【解析】
    连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
    【详解】
    连接CD,作DM⊥BC,DN⊥AC.
    ∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.
    则扇形FDE的面积是:=π.
    ∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.
    又∵DM⊥BC,DN⊥AC,∴DM=DN.
    ∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.
    则阴影部分的面积是:π﹣1.
    故答案为π﹣1.

    【点睛】
    本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
    16、60°
    【解析】
    根据题意可得,根据已知条件计算即可.
    【详解】
    根据题意可得:


    故答案为60°
    【点睛】
    本题主要考查旋转角的有关计算,关键在于识别那个是旋转角.
    17、
    【解析】
    试题解析:
    所以
    故答案为

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
    【解析】
    (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
    (2)只要证明△AEF∽△ACB,可得解决问题;
    (3)①分三种情形分别求解即可解决问题;
    ②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
    【详解】
    (1)证明:∵GH垂直平分线段AD,
    ∴HA=HD,GA=GD,
    ∵AB是直径,AB⊥GH,
    ∴EG=EH,
    ∴DG=DH,
    ∴AG=DG=DH=AH,
    ∴四边形AGDH是菱形.
    (2)解:∵AB是直径,
    ∴∠ACB=90°,
    ∵AE⊥EF,
    ∴∠AEF=∠ACB=90°,
    ∵∠EAF=∠CAB,
    ∴△AEF∽△ACB,
    ∴,
    ∴,
    ∴y=x2(x>0).
    (3)①解:如图1中,连接DF.

    ∵GH垂直平分线段AD,
    ∴FA=FD,
    ∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
    ∴AB=,
    ∴⊙O的面积为π.
    如图2中,当AF=AO时,

    ∵AB==,
    ∴OA=,
    ∵AF==,
    ∴=,
    解得x=4(负根已经舍弃),
    ∴AB=,
    ∴⊙O的面积为8π.
    如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,

    ∵△ACE∽△ABC,
    ∴AC2=AE•AB,
    ∴16=x•,
    解得x2=2﹣2(负根已经舍弃),
    ∴AB2=16+4x2=8+8,
    ∴⊙O的面积=π••AB2=(2+2)π
    综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
    ②如图3中,连接CG.

    ∵AC=4,BC=3,∠ACB=90°,
    ∴AB=5,
    ∴OH=OA=,
    ∴AE=,
    ∴OE=OA﹣AE=1,
    ∴EG=EH==,
    ∵EF=x2=,
    ∴FG=﹣,AF==,AH==,
    ∵∠CFG=∠AFH,∠FCG=∠AHF,
    ∴△CFG∽△HFA,
    ∴,
    ∴,
    ∴CG=﹣,
    ∴CG+9=4.
    故答案为4.
    【点睛】
    本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
    19、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
    【解析】
    解:(1)甲每分钟生产=25只;
    提高生产速度之前乙的生产速度==15只/分,
    故乙在提高生产速度之前已生产了零件:15×10=150只;
    (2)结合后图象可得:
    甲:y甲=25x(0≤x≤20);
    乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
    乙:y乙=15x(0≤x≤10),
    当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
    10k+b=150,17k+b=500,
    解得:k=50,b=−350,
    故y乙=50x−350(10≤x≤17).
    综上可得:y甲=25x(0≤x≤20);

    (3)令y甲=y乙,得25x=50x−350,
    解得:x=14,
    此时y甲=y乙=350只,故甲工人还有150只未生产.
    20、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
    【解析】
    (1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
    BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
    【详解】
    (Ⅰ)如图1中,

    ∵A(0,1),
    ∴OA=1,
    ∵四边形OADC是正方形,
    ∴∠OAD=90°,AD=OA=1,
    ∴OD=AC==,
    ∴AB=BC=BD=BO=,
    ∵BD=DG,
    ∴BG=,
    ∴==.
    (Ⅱ)①如图2中,

    ∵∠BAG′=90°,BG′=2AB,
    ∴sin∠AG′B==,
    ∴∠AG′B=30°,
    ∴∠ABG′=60°,
    ∴∠DBG′=30°,
    ∴旋转角α=30°,
    根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
    综上所述,旋转角α=30°或150°时,∠BAG′=90°.
    ②如图3中,连接OF,

    ∵四边形BE′F′G′是正方形的边长为
    ∴BF′=2,
    ∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
    此时α=315°,F′(+,﹣)
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
    21、
    【解析】
    根据分式的混合运算先计算括号里的再进行乘除.
    【详解】
    (x-1- )÷


    =
    【点睛】
    此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.
    22、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人
    【解析】
    (1)由“科普知识”人数及其百分比可得总人数;
    (2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;
    (3)总人数乘以“名人传记”的百分比可得.
    【详解】
    (1)840÷35%=2400(人),
    ∴该区抽样调查的人数是2400人;
    (2)2400×25%=600(人),
    ∴该区抽样调查最喜欢“漫画丛书”的人数是600人,
    补全图形如下:

    ×360°=21.6°,
    ∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;
    (3)从样本估计总体:14400×34%=4896(人),
    答:估计最喜欢读“名人传记”的学生是4896人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.
    23、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
    【解析】
    (1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
    (2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
    【详解】
    (1)∵双曲线过,将代入,解得:.
    ∴所求反比例函数表达式为:.
    ∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
    (2)由,可得:,∴.
    又∵,∴或,∴,或,.
    【点睛】
    本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
    24、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
    【解析】
    (1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
    (2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
    【详解】
    (1)①∵,,
    ∴直线的解析式为,
    ∵点B在直线上,纵坐标为,
    ∴,
    解得x=2
    ∴,
    ∴;
    ②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;

    (2)①∵点在上,
    ∴k=5,
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD,
    ∴A,B关于直线y=x对称,
    ∴,
    则有:,解得;
    ②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.

    ∵A,C关于原点对称,,
    ∴,
    ∵,
    当时,
    ∴,
    ∴,
    ∴a=5或(舍弃),
    当点P在点A的左侧时,同法可得a=1,
    ∴满足条件的a的范围为或.
    【点睛】
    本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.

    相关试卷

    东王营中学2022年中考数学模拟精编试卷含解析:

    这是一份东王营中学2022年中考数学模拟精编试卷含解析,共18页。试卷主要包含了的算术平方根是等内容,欢迎下载使用。

    东王营中学2021-2022学年中考数学全真模拟试卷含解析:

    这是一份东王营中学2021-2022学年中考数学全真模拟试卷含解析,共20页。试卷主要包含了关于x的正比例函数,y=,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年重庆南开融侨中学中考数学模拟试题含解析:

    这是一份2021-2022学年重庆南开融侨中学中考数学模拟试题含解析,共18页。试卷主要包含了方程x2+2x﹣3=0的解是,已知一次函数y=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map