2021-2022学年赤峰市重点中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为( )
A. B. C. D.1
2.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2 B.﹣1 C.1 D.2
3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
4.﹣3的相反数是( )
A. B. C. D.
5.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是( )
A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
7.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30° B.15° C.10° D.20°
8.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
A.20% B.11% C.10% D.9.5%
9.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
10.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.
部门
人数
每人所创年利润(单位:万元)
1
19
3
8
7
4
3
这11名员工每人所创年利润的众数、平均数分别是
A.10,1 B.7,8 C.1,6.1 D.1,6
二、填空题(共7小题,每小题3分,满分21分)
11.已知是方程组的解,则a﹣b的值是___________
12.把抛物线y=2x2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.
13.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
14.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.
15.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.
16.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.
17.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号).
三、解答题(共7小题,满分69分)
18.(10分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;
(2)请补全条形统计图;
(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
19.(5分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
20.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
21.(10分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
22.(10分)一道选择题有四个选项.
(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
23.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
24.(14分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
【详解】
取AB的中点M,连接OM,
∵四边形ABCD是平行四边形,
∴AD∥BC,OB=OD,
∴OM∥AD∥BC,OM=AD=×3=,
∴△EFB∽△EOM,
∴,
∵AB=5,BE=AB,
∴BE=2,BM=,
∴EM=+2=,
∴,
∴BF=,
故选A.
【点睛】
此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
2、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
3、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
4、D
【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
5、A
【解析】
作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
【详解】
解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
故选A.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
6、A
【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
7、B
【解析】
分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
详解:如图所示:
∵△ABC是等腰直角三角形,
∴∠BAC=90°,∠ACB=45°,
∴∠1+∠BAC=30°+90°=120°,
∵a∥b,
∴∠ACD=180°-120°=60°,
∴∠2=∠ACD-∠ACB=60°-45°=15°;
故选B.
点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.
8、C
【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
【详解】
解:设二,三月份平均每月降价的百分率为.
根据题意,得=1.
解得,(不合题意,舍去).
答:二,三月份平均每月降价的百分率为10%
【点睛】
本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
9、C
【解析】
由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);
∵CE∥AB,
∴△ECF∽△ADF,
得,
即DF=2CF,所以CF:CD=1:3,
故选C.
【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.
10、D
【解析】
根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.
【详解】
解:这11个数据的中位数是第8个数据,且中位数为1,
,
则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,
所以这组数据的众数为1万元,平均数为万元.
故选:.
【点睛】
此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、4;
【解析】
试题解析:把代入方程组得:,
①×2-②得:3a=9,即a=3,
把a=3代入②得:b=-1,
则a-b=3+1=4,
12、y=1(x﹣3)1﹣1.
【解析】
抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.
【详解】
∵y=1x1的顶点坐标为(0,0),
∴把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,﹣1),
∵平移不改变抛物线的二次项系数,
∴平移后的抛物线的解析式是y=1(x﹣3)1﹣1.
故答案为y=1(x﹣3)1﹣1.
【点睛】
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)1+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
13、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
14、一
【解析】
根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.
【详解】
∵关于x的一元二次方程mx2-2x-1=0无实数根,
∴m≠0且△=(-2)2-4m×(-1)<0,
∴m<-1,
∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.
故答案为一.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.
15、1
【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
【详解】
连结BD,如图,
∵DC=2AD,
∴S△ADB=S△BDC=S△BAC=×6=2,
∵AD⊥y轴于点D,AB⊥x轴,
∴四边形OBAD为矩形,
∴S矩形OBAD=2S△ADB=2×2=1,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
16、
【解析】
分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.
详解:连结OC,∵△ABC为正三角形,∴∠AOC==120°,
∵ , ∴图中阴影部分的面积等于
∴S扇形AOC=即S阴影=cm2.故答案为.
点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.
17、24+24
【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
【详解】
解:观察图形得MH=GN=AD=12,HG=AC,
AD=DC=12,
AC=12,
HG=6.
梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
故答案为24+24.
【点睛】
此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
三、解答题(共7小题,满分69分)
18、(1)60,1°.(2)补图见解析;(3)
【解析】
(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;
(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;
(3)根据题意先画出树状图,再根据概率公式即可得出答案.
【详解】
(1)接受问卷调查的学生共有30÷50%=60(人),
扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=1°,
故答案为60,1.
(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:
(3)画树状图得:
∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
∴恰好抽到1个男生和1个女生的概率为=.
【点睛】
此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.
19、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;
(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
【详解】
(1)将点B和点C的坐标代入函数解析式,得
解得
二次函数的解析式为y=﹣x2+2x+3;
(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,
如图1,连接PP′,则PE⊥CO,垂足为E,
∵C(0,3),
∴
∴点P的纵坐标,
当时,即
解得(不合题意,舍),
∴点P的坐标为
(3)如图2,
P在抛物线上,设P(m,﹣m2+2m+3),
设直线BC的解析式为y=kx+b,
将点B和点C的坐标代入函数解析式,得
解得
直线BC的解析为y=﹣x+3,
设点Q的坐标为(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
当y=0时,﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
S四边形ABPC=S△ABC+S△PCQ+S△PBQ
当m=时,四边形ABPC的面积最大.
当m=时,,即P点的坐标为
当点P的坐标为时,四边形ACPB的最大面积值为.
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
20、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)D与P重合时有最小值,求出点D的坐标即可;
(3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,且顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
(2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
∴当点P与点D重合时,PO+PC的值最小,
设直线AC的解析式为y=kx+b,
根据题意,得解得
∴直线AC的解析式为,
当x=2时,,
∴当PO+PC的值最小时,点P的坐标为(2,);
(3)存在.
①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
【点睛】
二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
21、(1)见解析;(2)6或
【解析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
22、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
24、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【解析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
内蒙古赤峰市洪山区重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份内蒙古赤峰市洪山区重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。
2021-2022学年吕梁市重点中学中考数学最后一模试卷含解析: 这是一份2021-2022学年吕梁市重点中学中考数学最后一模试卷含解析,共21页。试卷主要包含了在中,,,下列结论中,正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年湖南省邵阳市郊区重点中学中考数学最后一模试卷含解析: 这是一份2021-2022学年湖南省邵阳市郊区重点中学中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列四个命题,正确的有个等内容,欢迎下载使用。