终身会员
搜索
    上传资料 赚现金

    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析

    立即下载
    加入资料篮
    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析第1页
    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析第2页
    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析

    展开

    这是一份2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,A,下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )

    A. B. C. D.
    2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    3.将三粒均匀的分别标有,,,,,的正六面体骰子同时掷出,朝上一面上的数字分别为,,,则,,正好是直角三角形三边长的概率是(  )
    A. B. C. D.
    4.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是(  )

    A.70° B.60° C.55° D.50°
    5.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是(  )

    A. 或 
    B. 或 
    C. 或
    D.
    6.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为(  )

    A.10° B.15° C.20° D.25°
    7.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
    A. B. C. D.
    8.下列运算正确的是(  )
    A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a7
    9.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为(  )

    A.30° B.35° C.40° D.45°
    10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为(  )

    A.8cm B.4cm C.4cm D.5cm
    11.下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    12.下列事件中是必然事件的是(  )
    A.早晨的太阳一定从东方升起
    B.中秋节的晚上一定能看到月亮
    C.打开电视机,正在播少儿节目
    D.小红今年14岁,她一定是初中学生
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.
    14.一组数据1,4,4,3,4,3,4的众数是_____.
    15.计算:_______________.
    16.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.

    17.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.
    18.与是位似图形,且对应面积比为4:9,则与的位似比为______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.

    20.(6分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
    (1)求抛物线解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
    (3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.

    21.(6分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
    求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
    22.(8分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
    (1)求证:AM=FM;
    (2)若∠AMD=a.求证:=cosα.

    23.(8分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.
    (1)求证:AE是⊙O的切线;
    (2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=,求DF的值

    24.(10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
    类型
    价格
    进价(元/盏)
    售价(元/盏)
    A型
    30
    45
    B型
    50
    70
    (1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
    (2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
    (3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
    25.(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

    26.(12分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    27.(12分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.

    (1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
    (2)若OA=3BC,求k的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据A点坐标即可建立平面直角坐标.
    【详解】
    解:由A(0,2),B(1,1)可知原点的位置,

    建立平面直角坐标系,如图,
    ∴C(2,-1)
    故选:C.
    【点睛】
    本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
    2、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.
    3、C
    【解析】
    三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.
    【详解】
    解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,
    故选C.
    【点睛】
    本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.
    4、A
    【解析】
    试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
    考点:平行线的性质.
    5、B
    【解析】
    试题解析:如图所示:

    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    6、A
    【解析】
    先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
    【详解】
    由图可得,∠CDE=40° ,∠C=90°,
    ∴∠CED=50°,
    又∵DE∥AF,
    ∴∠CAF=50°,
    ∵∠BAC=60°,
    ∴∠BAF=60°−50°=10°,
    故选A.
    【点睛】
    本题考查了平行线的性质,熟练掌握这一点是解题的关键.
    7、D
    【解析】
    试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
    试题解析:画树状图如下:

    共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
    故选D.
    考点:列表法与树状法.
    8、D
    【解析】
    分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.
    【详解】
    解:A、a12÷a4=a8,此选项错误;
    B、a4•a2=a6,此选项错误;
    C、(-a2)3=-a6,此选项错误;
    D、a•(a3)2=a•a6=a7,此选项正确;
    故选D.
    【点睛】
    本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.
    9、B
    【解析】
    分析:根据平行线的性质和三角形的外角性质解答即可.
    详解:如图,

    ∵AB∥CD,∠1=45°,
    ∴∠4=∠1=45°,
    ∵∠3=80°,
    ∴∠2=∠3-∠4=80°-45°=35°,
    故选B.
    点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
    10、C
    【解析】
    连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
    【详解】
    解:连接OC,如图所示:
    ∵AB是⊙O的直径,弦CD⊥AB,

    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE为△AOC的外角,
    ∴∠COE=45°,
    ∴△COE为等腰直角三角形,

    故选:C.

    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    11、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
    12、A
    【解析】
    必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
    【详解】
    解:B、C、D选项为不确定事件,即随机事件.故错误;
    一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
    故选A.
    【点睛】
    该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,
    即x2−2x+1=−+1,所以(x−1)2= .
    故答案为:1,.
    14、1
    【解析】
    本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    在这一组数据中1是出现次数最多的,故众数是1.
    故答案为1.
    【点睛】
    本题为统计题,考查了众数的定义,是基础题型.
    15、
    【解析】
    先把化简为2,再合并同类二次根式即可得解.
    【详解】
    2-=.
    故答案为.
    【点睛】
    本题考查了二次根式的运算,正确对二次根式进行化简是关键.
    16、50°
    【解析】
    先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
    【详解】
    如图所示:

    ∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
    ∴∠BEF=∠1+∠F=50°,
    ∵AB∥CD,
    ∴∠2=∠BEF=50°,
    故答案是:50°.
    【点睛】
    考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).
    17、1
    【解析】
    先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.
    【详解】

    解得
    所以可以取
    故答案为:1.
    【点睛】
    本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.
    18、2:1
    【解析】
    由相似三角形的面积比等于相似比的平方,即可求得与的位似比.
    【详解】
    解与是位似图形,且对应面积比为4:9,
    与的相似比为2:1,
    故答案为:2:1.
    【点睛】
    本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)BD=2.
    【解析】
    (1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
    (2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
    【详解】
    (1)证明:连接OD,如图,

    ∵AB为⊙0的直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴AD平分BC,即DB=DC,
    ∵OA=OB,
    ∴OD为△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE是⊙0的切线;
    (2)∵∠B=∠C,∠CED=∠BDA=90°,
    ∴△DEC∽△ADB,
    ∴,
    ∴BD•CD=AB•CE,
    ∵BD=CD,
    ∴BD2=AB•CE,
    ∵⊙O半径为3,CE=2,
    ∴BD==2.
    【点睛】
    本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
    20、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【解析】
    (1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
    (2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
    (3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
    【详解】
    解:(1)设抛物线解析式为y=ax2+bx+c,
    ∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
    ∴,
    解得,
    ∴抛物线解析式为y=x2+x﹣4;
    (2)∵点M的横坐标为m,
    ∴点M的纵坐标为m2+m﹣4,
    又∵A(﹣4,0),
    ∴AO=0﹣(﹣4)=4,
    ∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
    ∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
    ∴当m=﹣1时,S有最大值,最大值为S=9;
    故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
    (3)∵点Q是直线y=﹣x上的动点,
    ∴设点Q的坐标为(a,﹣a),
    ∵点P在抛物线上,且PQ∥y轴,
    ∴点P的坐标为(a,a2+a﹣4),
    ∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
    又∵OB=0﹣(﹣4)=4,
    以点P,Q,B,O为顶点的四边形是平行四边形,
    ∴|PQ|=OB,
    即|﹣a2﹣2a+4|=4,
    ①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
    解得a=0(舍去)或a=﹣4,
    ﹣a=4,
    所以点Q坐标为(﹣4,4),
    ②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
    解得a=﹣2±2,
    所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
    综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【点睛】
    本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
    21、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
    【解析】
    (1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
    (1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
    (3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
    【详解】
    解:(1)连接OD,

    ∴OD=OB
    ∴∠ODB=∠OBD.
    ∵AB是直径,
    ∴∠ADB=90°,
    ∴∠CDB=90°.
    ∵E为BC的中点,
    ∴DE=BE,
    ∴∠EDB=∠EBD,
    ∴∠ODB+∠EDB=∠OBD+∠EBD,
    即∠EDO=∠EBO.
    ∵BC是以AB为直径的⊙O的切线,
    ∴AB⊥BC,
    ∴∠EBO=90°,
    ∴∠ODE=90°,
    ∴DE是⊙O的切线;
    (1)∵S1=5 S1
    ∴S△ADB=1S△CDB

    ∵△BDC∽△ADB

    ∴DB1=AD•DC

    ∴tan∠BAC==.
    (3)∵tan∠BAC=
    ∴,得BC=AB
    ∵E为BC的中点
    ∴BE=AB
    ∵AE=3,
    ∴在Rt△AEB中,由勾股定理得
    ,解得AB=4
    故⊙O的半径R=AB=1.

    【点睛】
    本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
    22、(1)见解析;(2)见解析.
    【解析】
    (1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
    (2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
    【详解】
    (1)由旋转性质可知:
    CD=CG且∠DCG=90°,
    ∴∠DGC=45°从而∠DGF=45°,
    ∵∠EFG=90°,
    ∴HF=FG=AD
    又由旋转可知,AD∥EF,
    ∴∠DAM=∠HFM,
    又∵∠DMA=∠HMF,
    ∴△ADM≌△FHM
    ∴AM=FM
    (2)作FN⊥DG垂足为N

    ∵△ADM≌△MFH
    ∴DM=MH,AM=MF=AF
    ∵FH=FG,FN⊥HG
    ∴HN=NG
    ∵DG=DM+HM+HN+NG=2(MH+HN)
    ∴MN=DG
    ∵cos∠FMG=
    ∴cos∠AMD=
    ∴=cosα
    【点睛】
    本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
    23、(1)见解析;(2)4
    【解析】
    分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;
    (2)由△ACD∽△CFD,可得,想办法求出CD、AD即可解决问题.
    详解:(1)证明:连接CD.
    ∵∠B=∠D,AD是直径,
    ∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,
    ∵∠B=∠EAC,
    ∴∠EAC+∠1=90°,
    ∴OA⊥AE,
    ∴AE是⊙O的切线.
    (2)∵CG⊥AD.OA⊥AE,
    ∴CG∥AE,
    ∴∠2=∠3,
    ∵∠2=∠B,
    ∴∠3=∠B,
    ∵∠CAG=∠CAB,
    ∴△ABC∽△ACG,
    ∴,
    ∴AC2=AG•AB=36,
    ∴AC=6,
    ∵tanD=tanB=,
    在Rt△ACD中,tanD==
    CD==6,AD==6,
    ∵∠D=∠D,∠ACD=∠CFD=90°,
    ∴△ACD∽△CFD,
    ∴,
    ∴DF=4,
    点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.
    24、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【解析】
    (1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
    (2)根据题意列出方程即可;
    (3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
    【详解】
    解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利P元,
    则P=(45﹣30)m+(70﹣50)(100﹣m),
    =15m+2000﹣20m,
    =﹣5m+2000,
    即P=﹣5m+2000,
    (3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
    ∴100﹣m≤4m,
    ∴m≥20,
    ∵k=﹣5<0,P随m的增大而减小,
    ∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
    答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【点睛】
    本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.
    25、7.6 m.
    【解析】
    利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长
    【详解】
    解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.
    ∵在Rt△BDC中,tan∠BDC=.
    ∴BC=CD=40 m.
    ∵在Rt△ADC中,tan∠ADC=.
    ∴.
    ∴AB≈7.6(m).
    答:旗杆AB的高度约为7.6 m.
    【点睛】
    此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.
    26、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    27、(1)k=b2+4b;(2).
    【解析】
    试题分析:(1)分别求出点B的坐标,即可解答.
    (2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x
    试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,
    ∴平移后直线的解析式为y=+4,
    ∵点B在直线y=+4上,
    ∴B(b,b+4),
    ∵点B在双曲线y=上,
    ∴B(b,),
    令b+4=

    (2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),
    ∵OA=3BC,BC∥OA,CF∥x轴,
    ∴CF=OD,
    ∵点A、B在双曲线y=上,
    ∴3b•b=,解得b=1,
    ∴k=3×1××1=.

    考点:反比例函数综合题.

    相关试卷

    2022-2023学年福建省厦门市思明区湖滨中学八年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年福建省厦门市思明区湖滨中学八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省厦门市思明区湖滨中学八年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年福建省厦门市思明区湖滨中学八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省厦门市思明区湖里中学中考数学二模试卷(含解析):

    这是一份2023年福建省厦门市思明区湖里中学中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map