终身会员
搜索
    上传资料 赚现金
    2021-2022学年福建省泉州市中考数学五模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年福建省泉州市中考数学五模试卷含解析01
    2021-2022学年福建省泉州市中考数学五模试卷含解析02
    2021-2022学年福建省泉州市中考数学五模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省泉州市中考数学五模试卷含解析

    展开
    这是一份2021-2022学年福建省泉州市中考数学五模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若点A,若二次函数的图象经过点,下列命题中真命题是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
    .问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为(  )
    A. B.
    C. D.
    2.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
    尺码/cm
    21.5
    22.0
    22.5
    23.0
    23.5
    人数
    2
    4
    3
    8
    3
    学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是(  )
    A.平均数 B.加权平均数 C.众数 D.中位数
    3.下列4个数:,,π,()0,其中无理数是(  )
    A. B. C.π D.()0
    4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是(  )
    A.
    B.
    C.
    D.
    5.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为(  )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).

    A.1 B.2 C.3 D.4
    6.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )
    A.y=2x2+3 B.y=2x2﹣3
    C.y=2(x+3)2 D.y=2(x﹣3)2
    7.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为(  )

    A.30° B.40° C.50° D.60°
    8.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为(  )
    A. B.
    C. D.
    9.若二次函数的图象经过点(﹣1,0),则方程的解为( )
    A., B., C., D.,
    10.下列命题中真命题是( )
    A.若a2=b2,则a=b B.4的平方根是±2
    C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    12.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.
    13.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).

    14.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.

    15.因式分解:a2b-4ab+4b=______.
    16.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.

    (1)求该抛物线的解析式;
    (2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
    (3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
    18.(8分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.
    (1)求证:PC是⊙O的切线.
    (2)求tan∠CAB的值.

    19.(8分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.

    20.(8分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.
    求一次函数的解析式和反比例函数的解析式;
    求的面积;
    根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.

    21.(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
    (2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
    (3)应用:请利用(1)(2)获得的经验解决问题:
    如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.

    22.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
    23.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:

    (1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
    (2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
    (3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
    24.如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
    (1)求证:四边形ABCD是菱形.
    (2)若AC=8,AB=5,求ED的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.
    【详解】
    解:设甲的钱数为x,乙的钱数为y,
    依题意,得:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    2、C
    【解析】
    根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
    【详解】
    解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
    则商店经理的这一决定应用的统计量是这组数据的众数.
    故选:C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    3、C
    【解析】
    =3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
    4、C
    【解析】
    首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
    故选C.
    点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
    5、C
    【解析】
    ∵EF⊥AC,点G是AE中点,
    ∴OG=AG=GE=AE,
    ∵∠AOG=30°,
    ∴∠OAG=∠AOG=30°,
    ∠GOE=90°-∠AOG=90°-30°=60°,
    ∴△OGE是等边三角形,故(3)正确;
    设AE=2a,则OE=OG=a,
    由勾股定理得,AO=,
    ∵O为AC中点,
    ∴AC=2AO=2,
    ∴BC=AC=,
    在Rt△ABC中,由勾股定理得,AB==3a,
    ∵四边形ABCD是矩形,
    ∴CD=AB=3a,
    ∴DC=3OG,故(1)正确;
    ∵OG=a,BC=,
    ∴OG≠BC,故(2)错误;
    ∵S△AOE=a•=,
    SABCD=3a•=32,
    ∴S△AOE=SABCD,故(4)正确;
    综上所述,结论正确是(1)(3)(4)共3个,
    故选C.
    【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
    6、C
    【解析】
    按照“左加右减,上加下减”的规律,从而选出答案.
    【详解】
    y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.
    【点睛】
    本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.
    7、C
    【解析】
    依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
    【详解】
    解:∵a∥b,
    ∴∠1=∠BAC=40°,
    又∵∠ABC=90°,
    ∴∠2=90°−40°=50°,
    故选C.
    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
    8、D
    【解析】
    解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
    9、C
    【解析】
    ∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
    故选C.
    考点:抛物线与x轴的交点.
    10、B
    【解析】
    利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
    【详解】
    A、若a2=b2,则a=±b,错误,是假命题;
    B、4的平方根是±2,正确,是真命题;
    C、两个锐角的和不一定是钝角,故错误,是假命题;
    D、相等的两个角不一定是对顶角,故错误,是假命题.
    故选B.
    【点睛】
    考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    12、2
    【解析】
    分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.
    详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.

    点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    13、(a+b)2=a2+2ab+b2
    【解析】
    完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
    【详解】
    解:

    ,




    【点睛】
    此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
    14、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,

    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
    15、
    【解析】
    先提公因式b,然后再运用完全平方公式进行分解即可.
    【详解】
    a2b﹣4ab+4b
    =b(a2﹣4a+4)
    =b(a﹣2)2,
    故答案为b(a﹣2)2.
    【点睛】
    本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.
    16、6
    【解析】
    试题分析:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;
    考点:多边形内角与外角.

    三、解答题(共8题,共72分)
    17、(1);(2);(3)或.
    【解析】
    (1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
    (2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
    (3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
    【详解】
    (1)抛物线的图象经过,,,
    把,,代入得:

    解得:,
    抛物线解析式为;
    (2)抛物线改写成顶点式为,
    抛物线对称轴为直线,
    ∴对称轴与轴的交点C的坐标为


    设点B的坐标为,,
    则,


    ∴点B的坐标为,
    设直线解析式为:,
    把,代入得:,
    解得:,
    直线解析式为:.
    (3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
    设⊙P与AB相切于点F,与x轴相切于点C,如图1;

    ∴PF⊥AB,AF=AC,PF=PC,
    ∵AC=1+2=3,BC=4,
    ∴AB==5,AF=3,
    ∴BF=2,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,);
    ②设⊙P与AB相切于点F,与轴相切于点C,如图2:

    ∴PF⊥AB,PF=PC,
    ∵AC=3,BC=4, AB=5,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,-6),
    综上所述,与直线和都相切时,
    或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
    18、(1)见解析;(2).
    【解析】
    (1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.
    (2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.
    【详解】
    (1)如图,连接OC、BC

    ∵⊙O的半径为3,PB=2
    ∴OC=OB=3,OP=OB+PB=5
    ∵PC=1
    ∴OC2+PC2=OP2
    ∴△OCP是直角三角形,
    ∴OC⊥PC
    ∴PC是⊙O的切线.
    (2)∵AB是直径
    ∴∠ACB=90°
    ∴∠ACO+∠OCB=90°
    ∵OC⊥PC
    ∴∠BCP+∠OCB=90°
    ∴∠BCP=∠ACO
    ∵OA=OC
    ∴∠A=∠ACO
    ∴∠A=∠BCP
    在△PBC和△PCA中:
    ∠BCP=∠A,∠P=∠P
    ∴△PBC∽△PCA,

    ∴tan∠CAB=
    【点睛】
    本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.
    19、见解析
    【解析】
    根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
    【详解】
    ∵BF 平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵∠BAC=90°,AD⊥BC,
    ∴∠ABF+∠AFB=∠CBF+∠BED=90°,
    ∴∠AFB=∠BED,
    ∵∠AEF=∠BED,
    ∴∠AFE=∠AEF,
    ∴AE=AF.
    【点睛】
    本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
    20、(1),;(2)8;(3)或.
    【解析】
    试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;
    (2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;
    (3)根据函数的图象和交点坐标即可求解.
    试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.
    ∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
    ∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.
    故直线AB的解析式为.
    ∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;
    (2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;
    (3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.

    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    21、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.
    【解析】
    (2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.
    【详解】
    解:(2)如图2,
    ∵∠DPC=∠A=∠B=90°,
    ∴∠ADP+∠APD=90°,
    ∠BPC+∠APD=90°,
    ∴∠APD=∠BPC,
    ∴△ADP∽△BPC,
    ∴,
    ∴ADBC=APBP;
    (2)结论ADBC=APBP仍成立;
    证明:如图2,∵∠BPD=∠DPC+∠BPC,
    又∵∠BPD=∠A+∠APD,
    ∴∠DPC+∠BPC=∠A+∠APD,
    ∵∠DPC=∠A=θ,
    ∴∠BPC=∠APD,
    又∵∠A=∠B=θ,
    ∴△ADP∽△BPC,
    ∴,
    ∴ADBC=APBP;
    (3)如下图,过点D作DE⊥AB于点E,

    ∵AD=BD=2,AB=6,
    ∴AE=BE=3
    ∴DE==4,
    ∵以D为圆心,以DC为半径的圆与AB相切,
    ∴DC=DE=4,
    ∴BC=2-4=2,
    ∵AD=BD,
    ∴∠A=∠B,
    又∵∠DPC=∠A,
    ∴∠DPC=∠A=∠B,
    由(2)(2)的经验得AD•BC=AP•BP,
    又∵AP=t,BP=6-t,
    ∴t(6-t)=2×2,
    ∴t=2或t=2,
    ∴t的值为2秒或2秒.
    【点睛】
    本题考查圆的综合题.
    22、 (1)1;(2)
    【解析】
    (1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
    【详解】
    解:(1)设口袋中黄球的个数为个,
    根据题意得:
    解得:=1
    经检验:=1是原分式方程的解
    ∴口袋中黄球的个数为1个
    (2)画树状图得:

    ∵共有12种等可能的结果,两次摸出都是红球的有2种情况
    ∴两次摸出都是红球的概率为: .
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    23、(1)50;4;5;画图见解析;(2)144°;(3)64
    【解析】
    (1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
    (2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
    (3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
    【详解】
    解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
    ∴=50(人).
    ∵课外阅读4小时的人数是32%,
    ∴50×32%=16(人),
    ∴男生人数=16﹣8=8(人);
    ∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
    ∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
    ∴中位数是4小时,众数是5小时.
    补全图形如图所示.

    故答案为50,4,5;
    (2)∵课外阅读5小时的人数是20人,
    ∴×360°=144°.
    故答案为144°;
    (3)∵课外阅读6小时的人数是4人,
    ∴800×=64(人).
    答:九年级一周课外阅读时间为6小时的学生大约有64人.
    【点睛】
    本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
    24、(1)证明见解析(2)4-3
    【解析】
    试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
    试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
    ∵△EAC是等边三角形, EO是AC边上中线,
    ∴EO⊥AC,即BD⊥AC,
    ∴平行四边形ABCD是是菱形.
    (2) ∵平行四边形ABCD是是菱形,
    ∴AO=CO==4,DO=BO,
    ∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
    在Rt△ABO中,由勾股定理可得:BO=3,
    ∴DO=BO=3,
    在Rt△EAO中,由勾股定理可得:EO=4
    ∴ED=EO-DO=4-3.

    相关试卷

    2023年福建省泉州市安溪县中考数学一模试卷(含解析): 这是一份2023年福建省泉州市安溪县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年福建省泉州市德化县中考五模数学试题含解析: 这是一份2021-2022学年福建省泉州市德化县中考五模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的倒数是,下列运算正确的是,下列计算,结果等于a4的是等内容,欢迎下载使用。

    2021-2022学年福建省永春第一中学中考数学五模试卷含解析: 这是一份2021-2022学年福建省永春第一中学中考数学五模试卷含解析,共21页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map