终身会员
搜索
    上传资料 赚现金
    2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析
    立即下载
    加入资料篮
    2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析01
    2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析02
    2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析

    展开
    这是一份2021-2022学年福建省龙岩市永定县金丰片市级名校中考数学押题试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
    A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
    2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    3.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为(  )

    A.30° B.35° C.40° D.45°
    4.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是( )

    A.2 B.4 C. D.2
    5.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )

    A.①②④ B.①②⑤ C.②③④ D.③④⑤
    6.点P(﹣2,5)关于y轴对称的点的坐标为(  )
    A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)
    7.边长相等的正三角形和正六边形的面积之比为( )
    A.1∶3 B.2∶3 C.1∶6 D.1∶
    8.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是(  )

    A. B. C. D.
    9.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    10.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    11.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )

    A.线段PB B.线段BC C.线段CQ D.线段AQ
    12.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )

    A.6 B.8 C.10 D.12
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式:(2a+b)2﹣(a+2b)2= .
    14.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.

    15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.

    16.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
    17.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.

    18.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.
    (1)若A、B移动到如图所示位置,计算的值.
    (2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.
    (3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.

    20.(6分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
    (1)求证:DB=DE;
    (2)求证:直线CF为⊙O的切线;
    (3)若CF=4,求图中阴影部分的面积.

    21.(6分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.

    22.(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
    (1)△BCE∽△ADE;
    (2)AB•BC=BD•BE.

    23.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

    请根据以上信息,回答下列问题:
    (l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
    (2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
    (3)请估计全校共征集作品的件数.
    (4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
    24.(10分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.

    25.(10分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
    26.(12分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.

    27.(12分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
    (1)求点C与点A的距离(精确到1km);
    (2)确定点C相对于点A的方向.
    (参考数据:)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    ∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
    当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
    解得b≥.
    当抛物线与x轴的交点的横坐标均大于等于0时,
    设抛物线与x轴的交点的横坐标分别为x1,x2,
    则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
    ∴此种情况不存在.
    ∴b≥.
    2、B
    【解析】
    试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴b>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2﹣4ac>0,
    而a<0,
    ∴<0,所以②错误;
    ∵C(0,c),OA=OC,
    ∴A(﹣c,0),
    把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
    ∴ac﹣b+1=0,所以③正确;
    设A(x1,0),B(x2,0),
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
    ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
    ∴x1•x2=,
    ∴OA•OB=﹣,所以④正确.
    故选B.
    考点:二次函数图象与系数的关系.
    3、B
    【解析】
    分析:根据平行线的性质和三角形的外角性质解答即可.
    详解:如图,

    ∵AB∥CD,∠1=45°,
    ∴∠4=∠1=45°,
    ∵∠3=80°,
    ∴∠2=∠3-∠4=80°-45°=35°,
    故选B.
    点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
    4、D
    【解析】
    连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
    【详解】
    连接CO,∵AB平分CD,
    ∴∠COB=∠DOB,AB⊥CD,CE=DE=2
    ∵∠A与∠DOB互余,
    ∴∠A+∠COB=90°,
    又∠COB=2∠A,
    ∴∠A=30°,∠COE=60°,
    ∴∠OCE=30°,
    设OE=x,则CO=2x,
    ∴CO2=OE2+CE2
    即(2x)2=x2+(2)2
    解得x=2,
    ∴BO=CO=4,
    ∴BE=CO-OE=2.
    故选D.

    【点睛】
    此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.
    5、A
    【解析】
    由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
    【详解】
    ①∵对称轴在y轴右侧,
    ∴a、b异号,
    ∴ab<2,故正确;
    ②∵对称轴
    ∴2a+b=2;故正确;
    ③∵2a+b=2,
    ∴b=﹣2a,
    ∵当x=﹣1时,y=a﹣b+c<2,
    ∴a﹣(﹣2a)+c=3a+c<2,故错误;
    ④根据图示知,当m=1时,有最大值;
    当m≠1时,有am2+bm+c≤a+b+c,
    所以a+b≥m(am+b)(m为实数).
    故正确.
    ⑤如图,当﹣1<x<3时,y不只是大于2.
    故错误.
    故选A.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
    抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
    系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
    左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
    物线与y轴交点,抛物线与y轴交于(2,c).
    6、D
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    点关于y轴对称的点的坐标为,
    故选:D.
    【点睛】
    本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.
    7、C
    【解析】
    解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.

    连接OA、OB,过O作OD⊥AB.

    ∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1, ∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.
    点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.
    8、B
    【解析】
    根据题意,在实验中有3个阶段,
    ①、铁块在液面以下,液面得高度不变;
    ②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
    ③、铁块在液面以上,完全露出时,液面高度又维持不变;
    分析可得,B符合描述;
    故选B.
    9、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    10、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
    11、C
    【解析】
    根据三角形高线的定义即可解题.
    【详解】
    解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
    故选C.
    【点睛】
    本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
    12、C
    【解析】
    连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,MA
    ∵△ABC是等腰三角形,点D是BC边上的中点


    解得
    ∵EF是线段AC的垂直平分线
    ∴点A关于直线EF的对称点为点C


    ∴AD的长为BM+MD的最小值
    ∴△CDM的周长最短




    故选:C.

    【点睛】
    本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3(a+b)(a﹣b).
    【解析】
    (2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)
    14、1
    【解析】
    先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
    【详解】
    解:∵点E,F分别是的中点,
    ∴FE是△BCD的中位线,
    .
    又∵E是BD的中点,
    ∴Rt△ABD中,,

    故答案为1.
    【点睛】
    本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
    15、或1
    【解析】
    图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
    图2,当∠MB’C=90°,∠A=90°,AB=AC,
    ∠C=45°,
    所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
    所以BM=1.


    【详解】
    请在此输入详解!
    16、16或1
    【解析】
    题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)当三角形的三边是5,5,6时,则周长是16;
    (2)当三角形的三边是5,6,6时,则三角形的周长是1;
    故它的周长是16或1.
    故答案为:16或1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    17、100 mm1
    【解析】
    首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.
    【详解】
    根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,
    下面的长方体长8mm,宽6mm,高1mm,
    ∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).
    故答案为100 mm1.
    【点睛】
    此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.
    18、2.
    【解析】
    试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,
    方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.
    考点:方差.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.
    【解析】
    (1)根据数轴即可得到a,b数值,即可得出结果.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2,即可求解.
    (1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.
    【详解】
    (1)由图可知:a=10,b=2,
    ∴a+b=2
    故a+b的值为2.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2
    ∴b|a|=b+a=23=3
    故a的值为3,b|a|的值为3.
    (1)∵点A不动,点B向右移动15.1个单位长
    ∴a=10,b=17.1
    ∴ba=17.1(10)=27.1
    故b比a大27.1.
    【点睛】
    本题主要考查了数轴,关键在于数形结合思想.
    20、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    (1)欲证明DB=DE.,只要证明∠DBE=∠DEB;
    (2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;
    (3)根据S阴影部分S扇形S△OBD计算即可.
    【详解】
    解:(1)∵E是△ABC的内心,
    ∴∠BAE=∠CAE,∠EBA=∠EBC,
    ∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
    ∴∠DBE=∠DEB,
    ∴DB=DE
    (2)连接CD

    ∵DA平分∠BAC,
    ∴∠DAB=∠DAC,
    ∴BD=CD,
    又∵BD=DF,
    ∴CD=DB=DF,

    ∴BC⊥CF,
    ∴CF是⊙O的切线
    (3)连接OD
    ∵O、D是BC、BF的中点,CF4, ∴OD2.
    ∵CF是⊙O的切线,

    ∴△BOD为等腰直角三角形
    ∴S阴影部分S扇形S△OBD .
    【点睛】
    本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.
    21、证明见解析
    【解析】
    试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
    试题解析:∵四边形为矩形,


    于点F,



    点睛:两组角对应相等,两三角形相似.
    22、(1)见解析;(2)见解析.
    【解析】
    (1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
    (2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
    【详解】
    证明:(1)∵AD=DC,
    ∴∠DAC=∠DCA,
    ∵DC2=DE•DB,
    ∴=,∵∠CDE=∠BDC,
    ∴△CDE∽△BDC,
    ∴∠DCE=∠DBC,
    ∴∠DAE=∠EBC,
    ∵∠AED=∠BEC,
    ∴△BCE∽△ADE,
    (2)∵DC2=DE•DB,AD=DC
    ∴AD2=DE•DB,
    同法可得△ADE∽△BDA,
    ∴∠DAE=∠ABD=∠EBC,
    ∵△BCE∽△ADE,
    ∴∠ADE=∠BCE,
    ∴△BCE∽△BDA,
    ∴=,
    ∴AB•BC=BD•BE.

    【点睛】
    本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
    23、(1)抽样调查(2)150°(3)180件(4)
    【解析】
    分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    (2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;
    (3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
    (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
    详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    故答案为抽样调查.
    (2)所调查的4个班征集到的作品数为:6÷=24件,
    C班有24﹣(4+6+4)=10件,
    补全条形图如图所示,

    扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
    故答案为150°;
    (3)∵平均每个班=6件,
    ∴估计全校共征集作品6×30=180件.
    (4)画树状图得:

    ∵共有20种等可能的结果,两名学生性别相同的有8种情况,
    ∴恰好选取的两名学生性别相同的概率为.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..
    24、BD= 2.
    【解析】
    试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
    试题解析:
    ∵∠ACD=∠ABC,
    又∵∠A=∠A,
    ∴△ABC∽△ACD ,
    ∴,
    ∵AC=,AD=1,
    ∴,
    ∴AB=3,
    ∴BD= AB﹣AD=3﹣1=2 .
    点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
    25、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
    【解析】
    (1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
    (2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
    【详解】
    (1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
    根据题意得:
    方程两边同乘以,得
    解得:
    经检验,是原方程的解.
    ∴当时,.
    答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
    (2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
    方案一:由甲工程队单独完成.所需费用为:(万元);
    方案二:由乙工程队单独完成.所需费用为:(万元);
    方案三:由甲乙两队合作完成.所需费用为:(万元).
    ∵∴应该选择甲工程队承包该项工程.
    【点睛】
    本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    26、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
    【解析】
    (1)将点A的坐标代入解析式求解可得;
    (2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
    (3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
    【详解】
    (1)将点A(4,3)代入y=,得:k=12,
    则反比例函数解析式为y=;
    (2)如图,过点A作AC⊥x轴于点C,

    则OC=4、AC=3,
    ∴OA==1,
    ∵AB∥x轴,且AB=OA=1,
    ∴点B的坐标为(9,3);
    (3)∵点B坐标为(9,3),
    ∴OB所在直线解析式为y=x,
    由可得点P坐标为(6,2),(负值舍去),
    过点P作PD⊥x轴,延长DP交AB于点E,
    则点E坐标为(6,3),
    ∴AE=2、PE=1、PD=2,
    则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
    【点睛】
    本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
    27、(1)173;(2)点C位于点A的南偏东75°方向.
    【解析】
    试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
    (2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
    试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
    由图得,∠ABC=75°﹣10°=60°.
    在Rt△ABD中,∵∠ABC=60°,AB=100,
    ∴BD=50,AD=50.
    ∴CD=BC﹣BD=200﹣50=1.
    在Rt△ACD中,由勾股定理得:
    AC=(km).
    答:点C与点A的距离约为173km.
    (2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
    ∴AB2+AC2=BC2. ∴∠BAC=90°.
    ∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
    答:点C位于点A的南偏东75°方向.

    考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.

    相关试卷

    福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析: 这是一份福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析,共17页。试卷主要包含了如图,O为原点,点A的坐标为,计算3的结果是等内容,欢迎下载使用。

    福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析: 这是一份福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了点P等内容,欢迎下载使用。

    2022年福建省龙岩市永定县金丰片区重点达标名校中考数学适应性模拟试题含解析: 这是一份2022年福建省龙岩市永定县金丰片区重点达标名校中考数学适应性模拟试题含解析,共23页。试卷主要包含了“绿水青山就是金山银山”等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map