年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析

    2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析第1页
    2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析第2页
    2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析

    展开

    这是一份2021-2022学年福建泉州安溪恒兴中学中考数学全真模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,内角和为540°的多边形是,点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是(  )
    A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
    2.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )

    A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
    3.一、单选题
    二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc4ac;③4a+2b+c0
    ∴abc0
    ∴4a+2b+c>0,
    故错误;
    ④∵二次函数图象的对称轴是直线x=1,
    ∴2a+b=0,
    故正确.
    综上所述,正确的结论有3个.
    故选B.
    4、C
    【解析】
    设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.
    【详解】
    设抛物线解析式为y=-(x-m)(x-m+6),
    ∵y=-[x2-2(m-3)x+(m-3)2-1]
    =-[x-(m-3)]2+1,
    ∴抛物线的顶点坐标为(m-3,1),
    ∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,
    即n=1.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    5、D
    【解析】
    抛物线的顶点坐标为P(−,),设A 、B两点的坐标为A(,0)、B(,0)则AB=,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.
    【详解】
    解:∵,
    ∴AB==,
    ∵若S△APB=1
    ∴S△APB=×AB× =1,

    ∴−××,
    ∴,
    设=s,
    则,
    故s=2,
    ∴=2,
    ∴.
    故选D.
    【点睛】
    本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.
    6、C
    【解析】
    先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
    【详解】
    解:∵一个正方形花坛的面积为,其边长为,


    则a的取值范围为:.
    故选:C.
    【点睛】
    此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
    7、C
    【解析】
    试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
    考点:多边形内角与外角.
    8、A
    【解析】
    试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
    解:设这个多边形的外角为x°,则内角为3x°,
    由题意得:x+3x=180,
    解得x=45,
    这个多边形的边数:360°÷45°=8,
    故选A.
    考点:多边形内角与外角.
    9、D
    【解析】
    解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.
    【详解】
    由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).
    故选D.

    10、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
    【详解】
    第一个图中有8根火柴棒组成,
    第二个图中有8+6个火柴棒组成,
    第三个图中有8+2×6个火柴组成,
    ……
    ∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
    故答案为6n+2
    【点睛】
    本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.
    12、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】

    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
    13、16.
    【解析】
    试题解析:∵42=16,
    ∴4是16的算术平方根.
    考点:算术平方根.
    14、①②③④⑤⑥⑦.
    【解析】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
    【详解】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
    则∠DAH=∠BAM,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵∠MAN=45°,
    ∴∠BAN+∠DAN=45°,
    ∴∠NAH=45°,
    在△MAN和△HAN中,

    ∴△MAN≌△HAN,
    ∴MN=NH=BM+DN,①正确;
    ∵BM+DN≥1,(当且仅当BM=DN时,取等号)
    ∴BM=DN时,MN最小,
    ∴BM=b,
    ∵DH=BM=b,
    ∴DH=DN,
    ∵AD⊥HN,
    ∴∠DAH=∠HAN=11.5°,
    在DA上取一点G,使DG=DH=b,
    ∴∠DGH=45°,HG=DH=b,
    ∵∠DGH=45°,∠DAH=11.5°,
    ∴∠AHG=∠HAD,
    ∴AG=HG=b,
    ∴AB=AD=AG+DG=b+b=b=a,
    ∴,
    ∴,
    当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
    即:,
    ∴≤≤1,⑧错误;
    ∵MN=NH=BM+DN
    ∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
    ∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
    ∵△MAN≌△HAN,
    ∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;

    如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
    ∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
    ∴∠EAH=∠EAF=45°,
    ∵EA=EA,AH=AD,
    ∴△EAH≌△EAF,
    ∴EF=HE,
    ∵∠ABH=∠ADF=45°=∠ABD,
    ∴∠HBE=90°,
    在Rt△BHE中,HE1=BH1+BE1,
    ∵BH=DF,EF=HE,
    ∵EF1=BE1+DF1,③结论正确;
    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,∠BDC=∠ADB=45°,
    ∵∠MAN=45°,
    ∴∠EAN=∠EDN,
    ∴A、E、N、D四点共圆,
    ∴∠ADN+∠AEN=180°,
    ∴∠AEN=90°
    ∴△AEN是等腰直角三角形,
    同理△AFM是等腰直角三角形;⑤结论正确;
    ∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
    ∴AM=AF,AN=AE,
    如图3,过点M作MP⊥AN于P,
    在Rt△APM中,∠MAN=45°,
    ∴MP=AMsin45°,
    ∵S△AMN=AN•MP=AM•AN•sin45°,
    S△AEF=AE•AF•sin45°,
    ∴S△AMN:S△AEF=1,
    ∴S△AMN=1S△AEF,⑥正确;
    ∵点A到MN的距离等于正方形ABCD的边长,
    ∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
    即:正确的有①②③④⑤⑥⑦,
    故答案为①②③④⑤⑥⑦.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
    15、5
    【解析】
    分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
    ∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
    ∴△BAE是等腰三角形,即BE=AB=6cm.
    同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
    ∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
    ∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
    ∴EF+CF=5cm.
    16、3.05×105
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|10时,n是正数;当原数的绝对值

    相关试卷

    福建泉州安溪恒兴中学2023-2024学年数学九上期末联考试题含答案:

    这是一份福建泉州安溪恒兴中学2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了方程的解是等内容,欢迎下载使用。

    福建泉州安溪恒兴中学2023-2024学年九上数学期末联考试题含答案:

    这是一份福建泉州安溪恒兴中学2023-2024学年九上数学期末联考试题含答案,共8页。试卷主要包含了已知,则的值是等内容,欢迎下载使用。

    2023-2024学年福建泉州安溪恒兴中学八上数学期末学业质量监测模拟试题含答案:

    这是一份2023-2024学年福建泉州安溪恒兴中学八上数学期末学业质量监测模拟试题含答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map