2021-2022学年甘肃省白银市白银区重点中学中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
2.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为
A. B. C. D.
3.如果代数式有意义,则实数x的取值范围是( )
A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
4.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
5.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A.70° B.80° C.110° D.140°
6.下列方程中,两根之和为2的是( )
A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
7.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A. B. C. D.
8.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )
A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
9.一、单选题
如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的( )
A.点A B.点B C.点C D.点D
10.若正六边形的半径长为4,则它的边长等于( )
A.4 B.2 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
12.分解因式:8x²-8xy+2y²= _________________________ .
13.化简: =____.
14.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.
2x
3
2
y
﹣3
4y
15.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
16.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .
三、解答题(共8题,共72分)
17.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.
18.(8分)已知平行四边形.
尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.
19.(8分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
20.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
21.(8分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
22.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
23.(12分)解不等式组:
24.已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
2、B
【解析】
在两个直角三角形中,分别求出AB、AD即可解决问题;
【详解】
在Rt△ABC中,AB=,
在Rt△ACD中,AD=,
∴AB:AD=:=,
故选B.
【点睛】
本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
3、C
【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
【详解】
由题意得,x+3≥0,x≠0,
解得x≥−3且x≠0,
故选C.
【点睛】
本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
数据12000用科学记数法表示为1.2×104,故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
详解:作对的圆周角∠APC,如图,
∵∠P=∠AOC=×140°=70°
∵∠P+∠B=180°,
∴∠B=180°﹣70°=110°,
故选:C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
6、B
【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.
【详解】
在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
故选B.
【点睛】
本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
7、A
【解析】
试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
综上所知这个几何体是圆柱.
故选A.
考点:由三视图判断几何体.
8、C
【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:1.21万=1.21×104,
故选:C.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【解析】
根据全等三角形的性质和已知图形得出即可.
【详解】
解:∵△MNP≌△MEQ,
∴点Q应是图中的D点,如图,
故选:D.
【点睛】
本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
10、A
【解析】
试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
考点:正多边形和圆.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、①③④
【解析】
分析:根据两个向量垂直的判定方法一一判断即可;
详解:①∵2×(−1)+1×2=0,
∴与垂直;
②∵
∴与不垂直.
③∵
∴与垂直.
④∵
∴与垂直.
故答案为:①③④.
点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
12、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
13、
【解析】
先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
【详解】
原式,
故答案为
【点睛】
本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
14、0
【解析】
根据题意列出方程组,求出方程组的解即可得到结果.
【详解】
解:根据题意得:,即,
解得:,
则x+y=﹣1+1=0,
故答案为0
【点睛】
此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
15、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
16、1
【解析】
利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
【详解】
解:设AF=a(a<2),则F(a,2),E(2,a),
∴FD=DE=2−a,
∴S△DEF=DF•DE==,
解得a=或a=(不合题意,舍去),
∴F(,2),
把点F(,2)代入
解得:k=1,
故答案为1.
【点睛】
本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
18、(1)见解析;(2)见解析.
【解析】
试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;
(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.
试题解析:(1)如图所示,AF即为所求;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.
∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.
考点:作图—基本作图;平行四边形的性质.
19、(1)AB=2;相等;(2)a=±;(3), .
【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
【详解】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
∴,(舍去),∴抛物线的“完美三角形”的斜边
②相等;
(2)∵抛物线与抛物线的形状相同,
∴抛物线与抛物线的“完美三角形”全等,
∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),∴.
(3)∵ 的最大值为-1,
∴ ,
∴ ,
∵抛物线的“完美三角形”斜边长为n,
∴抛物线的“完美三角形”斜边长为n,
∴B点坐标为,
∴代入抛物线,得,
∴ (不合题意舍去),
∴,
∴
20、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
【解析】
解:(1)
(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
21、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2.
.
【解析】
试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.
试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.
考点:翻折变换(折叠问题);矩形的性质;相似形综合题.
22、 (1)600人(2)
【解析】
(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
【详解】
(1)(人),∴最喜欢方式A的有600人
(2)列表法:
A
B
C
A
A,A
A,B
A,C
B
B,A
B,B
B,C
C
C,A
C,B
C,C
树状法:
∴(同一种购票方式)
【点睛】
本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
23、﹣9<x<1.
【解析】
先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.
【详解】
解不等式1(x﹣1)<2x,得:x<1,
解不等式﹣<1,得:x>﹣9,
则原不等式组的解集为﹣9<x<1.
【点睛】
此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.
24、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
甘肃省白银市白银区2023-2024学年八年级上学期期末数学试题(含解析): 这是一份甘肃省白银市白银区2023-2024学年八年级上学期期末数学试题(含解析),共20页。
2021年甘肃省白银市中考数学试卷(含解析): 这是一份2021年甘肃省白银市中考数学试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年甘肃省白银市中考数学试卷(含解析): 这是一份2023年甘肃省白银市中考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。