2021-2022学年福建省永春第一中学中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( )
A.3 B.4 C. D.
2.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1 B.4 C.8 D.﹣16
3.4的平方根是( )
A.16 B.2 C.±2 D.±
4.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为( )
A.42° B.66° C.69° D.77°
5.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
6.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是( )
A.12 B.14 C.16 D.18
7.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )
A.14° B.15° C.16° D.17°
8.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )
A.90° B.30° C.45° D.60°
9.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )
A. B. C. D.
10.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )
A.6.5×105 B.6.5×106 C.6.5×107 D.65×105
11.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
12.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
B.用计算器计算:•tan63°27′≈_____(精确到0.01).
14.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
15.一元二次方程x﹣1=x2﹣1的根是_____.
16.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
17.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.
18.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:,其中,a、b满足.
20.(6分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
21.(6分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.
22.(8分)观察下列算式:
① 1 × 3 - 22 =" 3" - 4 = -1
② 2 × 4 - 32 =" 8" - 9 = -1
③3 × 5 - 42 =" 15" - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
23.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.
24.(10分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
25.(10分)(1)计算:sin45°
(2)解不等式组:
26.(12分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
27.(12分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.
求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,写出的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
如图所示:
过点O作OD⊥AB于点D,
∵OB=3,AB=4,OD⊥AB,
∴BD=AB=×4=2,
在Rt△BOD中,OD=.
故选C.
2、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
3、C
【解析】
试题解析:∵(±2)2=4,
∴4的平方根是±2,
故选C.
考点:平方根.
4、C
【解析】
在△ABC中,∠ACB=90°,∠A=24°,
∴∠B=90°-∠A=66°.
由折叠的性质可得:∠BCD=∠ACB=45°,
∴∠BDC=180°-∠BCD-∠B=69°.
故选C.
5、C
【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
考点:科学记数法—表示较大的数.
6、C
【解析】
延长线段BN交AC于E.
∵AN平分∠BAC,∴∠BAN=∠EAN.
在△ABN与△AEN中,
∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
∴AC=AE+CE=10+6=16.故选C.
7、C
【解析】
依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
【详解】
如图,
∵∠ABC=60°,∠2=44°,
∴∠EBC=16°,
∵BE∥CD,
∴∠1=∠EBC=16°,
故选:C.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
8、C
【解析】
根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
【详解】
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故选:C.
【点睛】
本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
9、B
【解析】
解:画树状图得:
∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将6500000用科学记数法表示为:6.5×106.
故答案选B.
【点睛】
本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.
11、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
12、B
【解析】
解方程得:x=5或x=1.
当x=1时,3+4=1,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、20 5.1
【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
B、利用计算器计算可得.
【详解】
A、根据题意,此正多边形的边数为360°÷45°=8,
则这个正多边形对角线的条数一共有=20,
故答案为20;
B、•tan63°27′≈2.646×2.001≈5.1,
故答案为5.1.
【点睛】
本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
14、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
15、x=0或x=1.
【解析】
利用因式分解法求解可得.
【详解】
∵(x﹣1)﹣(x+1)(x﹣1)=0,
∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
则x=0或x=1,
故答案为:x=0或x=1.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
16、1-1.
【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
【详解】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2,∠BAC=120°,
∴∠ACB=∠B=∠ACF=10°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG=∠CGE=10°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中,
,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CF=2x,DE=FE=6-1x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF==x,
∴6-1x=x,
x=1-,
∴DE=x=1-1.
故答案为:1-1.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
17、
【解析】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.
【详解】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.
∵四边形ADEF是菱形,
∴F,D关于直线AE对称,
∴PF=PD,
∴PF+PB=PA+PB,
∵PD+PB≥BD,
∴PF+PB的最小值是线段BD的长,
∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,
∵∠EGB=45°,EG⊥BG,
∴EG=BG=x,
∴x+x+x=3+,
∴x=2,
∴DH=1,BH=3,
∴BD==,
∴PF+PB的最小值为,
故答案为.
【点睛】
本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.
18、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.
【详解】
原式=,
=,
=,
解方程组得,
所以原式=.
【点睛】
本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.
20、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
21、证明见解析.
【解析】
由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
证明:∵BE∥DF,∴∠ABE=∠D,
在△ABE和△FDC中,
∠ABE=∠D,AB=FD,∠A=∠F
∴△ABE≌△FDC(ASA),
∴AE=FC.
“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
22、⑴;
⑵答案不唯一.如;
⑶
.
【解析】
(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中,发现的规律,由特殊到一般,得出结论;
(3)一定成立.利用整式的混合运算方法加以证明.
23、 (8+8)m.
【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
【详解】
在Rt△EBC中,有BE=EC×tan45°=8m,
在Rt△AEC中,有AE=EC×tan30°=8m,
∴AB=8+8(m).
【点睛】
本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
24、
【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
【详解】
解:
过点B作BD⊥AC,垂足为点D,
在Rt△ABD中,,
∵,AB=5,
∴AD=AB·cosA=5×=3,
∴BD=4,
∵AC=5,
∴DC=2,
∴BC=.
【点睛】
本题考查了锐角的三角函数和勾股定理的运用.
25、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
26、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
【解析】
(1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
(1 )由题意可得:cos∠FHE=,则∠FHE=60°;
(2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,
在 Rt△ABC 中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
∴sin60°==,
∴FG≈2.17(m),
∴FM=FG+GM≈4.4(米),
答:篮板顶端 F 到地面的距离是 4.4 米.
【点睛】
本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
27、(1)点的坐标为;(2);(3)或.
【解析】
(1)点A在反比例函数上,轴,,求坐标;
(2)梯形面积,求出B点坐标,将点代入 即可;
(3)结合图象直接可求解;
【详解】
解:(1)∵点在的图像上,轴,.
∴,
∴
∴点的坐标为;
(2)∵梯形的面积是3,
∴,
解得,
∴点的坐标为,
把点与代入
得
解得:,.
∴一次函数的解析式为.
(3)由题意可知,作出函数和函数图像如下图所示:
设函数和函数的另一个交点为E,
联立 ,得
点E的坐标为
即 的函数图像要在的函数图像上面,
可将图像分割成如下图所示:
由图像可知所对应的自变量的取值范围为:或.
【点睛】
本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.
福建省泉州市永春第二中学2021-2022学年中考联考数学试卷含解析: 这是一份福建省泉州市永春第二中学2021-2022学年中考联考数学试卷含解析,共20页。试卷主要包含了已知m=,n=,则代数式的值为等内容,欢迎下载使用。
福建省建瓯市徐墩中学2021-2022学年中考数学五模试卷含解析: 这是一份福建省建瓯市徐墩中学2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了下列各数是不等式组的解是,有个零件如图放置,它的主视图是,下列各数中,比﹣1大1的是等内容,欢迎下载使用。
福建省晋江市永春县2021-2022学年中考联考数学试卷含解析: 这是一份福建省晋江市永春县2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。