年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析

    2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析第1页
    2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析第2页
    2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析

    展开

    这是一份2021-2022学年甘肃省兰州市西固区中考数学全真模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列图形是轴对称图形的有,把a•的根号外的a移到根号内得,如图,两个反比例函数y1=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    2.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
    A.4 B.3 C.2 D.1
    3.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )
    A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
    4.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    5.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
    沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )

    A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
    6.下列图形是轴对称图形的有(  )

    A.2个 B.3个 C.4个 D.5个
    7.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    8.把a•的根号外的a移到根号内得(  )
    A. B.﹣ C.﹣ D.
    9.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为(  )

    A.:1 B.2: C.2:1 D.29:14
    10.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为(  )
    A.= B.=
    C.= D.=
    11.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是(  )
    A.1 B.2 C.﹣ D.﹣
    12.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________

    14.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
    15.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.

    16.不等式组的解集是____________;
    17.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.

    18.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.

    解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.
    20.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.

    21.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
    根据图中信息求出  ,  ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
    22.(8分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
    23.(8分)计算:
    (1)(2)2﹣|﹣4|+3﹣1×6+20;
    (2).
    24.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.

    25.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
    (1)求证:四边形OCED是菱形;
    (2)若∠BAC=30°,AC=4,求菱形OCED的面积.

    26.(12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

    27.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.

    请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    2、A
    【解析】
    分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
    详解:根据题意,得:=2x
    解得:x=3,
    则这组数据为6、7、3、9、5,其平均数是6,
    所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
    故选A.
    点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1800000000=1.8×109,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    5、C
    【解析】
    如图所示,连接CM,
    ∵M是AB的中点,
    ∴S△ACM=S△BCM=S△ABC,
    开始时,S△MPQ=S△ACM=S△ABC;
    由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
    结束时,S△MPQ=S△BCM=S△ABC.
    △MPQ的面积大小变化情况是:先减小后增大.故选C.
    6、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    7、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    8、C
    【解析】
    根据二次根式有意义的条件可得a-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)7x1+4x+4;(1)55.
    【解析】
    (1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;
    (1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.
    【详解】
    解:
    (1)纸片①上的代数式为:
    (4x1+5x+6)+(3x1﹣x﹣1)
    =4x1+5x+6+3x1-x-1
    =7x1+4x+4
    (1)解方程:1x=﹣x﹣9,解得x=﹣3
    代入纸片①上的代数式得
    7x1+4x+4
    =7×(-3)²+4×(-3)+4
    =63-11+4=55
    即纸片①上代数式的值为55.
    【点睛】
    本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.
    20、证明见解析.
    【解析】
    想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=FC+CD,
    ∴AC=FD,
    在△ABC 和△DEF 中,

    ∴△ABC≌△DEF(AAS)
    ∴BC=EF.
    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    21、(1)100,35;(2)补全图形,如图;(3)800人
    【解析】
    (1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
    【详解】
    解:(1)∵被调查总人数为m=10÷10%=100人,
    ∴用支付宝人数所占百分比n%= ,
    ∴m=100,n=35.
    (2)网购人数为100×15%=15人,
    微信人数所占百分比为,
    补全图形如图:

    (3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
    【点睛】
    本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
    22、(1)证明:∵ABCD是平行四边形
    ∴AB=CD
    AB∥CD
    ∴∠ABE=∠CDF
    又∵AE⊥BD,CF⊥BD
    ∴∠AEB=∠CFD=
    ∴△ABE≌△CDF
    ∴BE=DF
    【解析】
    证明:在□ABCD中
    ∵AB∥CD
    ∴∠ABE=∠CDF…………………………………………………………4分
    ∵AE⊥BD CF⊥BD
    ∴∠AEB=∠CFD=900……………………………………………………5分
    ∵AB=CD
    ∴△ABE≌△CDF…………………………………………………………6分
    ∴BE=DF
    23、(1)1;(2).
    【解析】
    (1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;
    (2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.
    【详解】
    (1)原式=8-4+×6+1
    =8-4+2+1
    =1.
    (2)原式=
    =
    =.
    【点睛】
    本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.
    24、(1)证明见解析;(2)阴影部分的面积为.
    【解析】
    (1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
    【详解】
    解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
    ∵AC平分∠BAE, ∴∠OAC=∠CAE,
    ∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
    ∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
    ∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
    (2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
    在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
    ∴DB=OB=OC=AD=4,DO=8,
    ∴CD=
    ∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
    ∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
    ∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
    ∴阴影部分的面积为8﹣.

    25、(1)证明见解析;(1).
    【解析】
    (1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.
    【详解】
    证明:,,
    四边形OCED是平行四边形,
    矩形ABCD,,,,

    四边形OCED是菱形;
    在矩形ABCD中,,,,


    连接OE,交CD于点F,

    四边形OCED为菱形,
    为CD中点,
    为BD中点,



    【点睛】
    本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
    26、(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或.
    【解析】
    (1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;
    (2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;
    ②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.
    【详解】
    解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:
    解得:b=2,c=3,
    ∴抛物线的解析式为y=-x2+2x+3;
    当y=0时,-x2+2x+3=0,
    解得:x=3,或x=-1,
    ∵B(3,0),
    ∴A(-1,0);
    设直线AD的解析式为y=kx+a,
    把A和D的坐标代入得:
    解得:k=1,a=1,
    ∴直线AD的解析式为y=x+1;
    (2)分两种情况:①当a<-1时,DF∥AE且DF=AE,
    则F点即为(0,3),
    ∵AE=-1-a=2,
    ∴a=-3;
    ②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,
    设F (a-3,-3),
    由-(a-3)2+2(a-3)+3=-3,
    解得:a=;
    综上所述,满足条件的a的值为-3或.
    【点睛】
    本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.
    27、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
    【解析】
    试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
    (2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;

    (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
    (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
    考点:①条形统计图;②扇形统计图.

    相关试卷

    甘肃省兰州市树人中学2021-2022学年中考数学全真模拟试卷含解析:

    这是一份甘肃省兰州市树人中学2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算﹣2+3的结果是,点P,已知,则的值是等内容,欢迎下载使用。

    2022届甘肃省兰州市七里河区中考数学全真模拟试题含解析:

    这是一份2022届甘肃省兰州市七里河区中考数学全真模拟试题含解析,共24页。试卷主要包含了函数等内容,欢迎下载使用。

    2021-2022学年甘肃省静宁县重点达标名校中考数学全真模拟试题含解析:

    这是一份2021-2022学年甘肃省静宁县重点达标名校中考数学全真模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,二次函数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map