|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析01
    2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析02
    2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年广东省广州市天河初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若a与5互为倒数,则a=( )
    A. B.5 C.-5 D.
    2.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是 ( )
    A. B.
    C. D.
    3.下列解方程去分母正确的是( )
    A.由,得2x﹣1=3﹣3x
    B.由,得2x﹣2﹣x=﹣4
    C.由,得2y-15=3y
    D.由,得3(y+1)=2y+6
    4.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    5.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是(  )

    A.①②③ B.①②④ C.①③④ D.①②③④
    6.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为(  )

    A.18 B.12 C.9 D.1
    7.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )

    A.3 B.4 C. D.5
    8.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
    A. B. C. D.
    9.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是(  )

    A.2 B.3 C.4 D.5
    10.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:
    ①PA=PB;
    ②当OA=OB时四边形OAPB是正方形;
    ③四边形OAPB的面积和周长都是定值;
    ④连接OP,AB,则AB>OP.
    其中正确的结论是_____.(把你认为正确结论的序号都填上)

    12.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.
    13.的算术平方根为______.
    14.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.

    15.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
    B.用计算器计算:•tan63°27′≈_____(精确到0.01).
    16.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.

    17.如图,在中,,, ,,,点在上,交于点,交于点,当时,________.

    三、解答题(共7小题,满分69分)
    18.(10分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

    (Ⅰ)该教师调查的总人数为   ,图②中的m值为   ;
    (Ⅱ)求样本中分数值的平均数、众数和中位数.
    19.(5分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:
    (1)该公司“高级技工”有   名;
    (2)所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;
    (3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
    (4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    20.(8分)(11分)阅读资料:
    如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.
    我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.
    问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 .
    综合应用:
    如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
    ①证明AB是⊙P的切点;
    ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

    21.(10分)先化简,然后从中选出一个合适的整数作为的值代入求值.
    22.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:

    根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
    23.(12分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
    24.(14分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    (1)求证:四边形DEBF是矩形;
    (2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
    详解:根据题意可得:5a=1,解得:a=, 故选A.
    点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
    2、D
    【解析】
    根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.
    【详解】
    解:有两种情况,
    当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;
    当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;
    根据选项可知,D选项满足条件.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.
    3、D
    【解析】
    根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
    【详解】
    A.由,得:2x﹣6=3﹣3x,此选项错误;
    B.由,得:2x﹣4﹣x=﹣4,此选项错误;
    C.由,得:5y﹣15=3y,此选项错误;
    D.由,得:3( y+1)=2y+6,此选项正确.
    故选D.
    【点睛】
    本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
    4、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    5、D
    【解析】
    根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
    【详解】
    E点有4中情况,分四种情况讨论如下:
    由AB∥CD,可得∠AOC=∠DCE1=β
    ∵∠AOC=∠BAE1+∠AE1C,
    ∴∠AE1C=β-α
    过点E2作AB的平行线,由AB∥CD,
    可得∠1=∠BAE2=α,∠2=∠DCE2=β
    ∴∠AE2C=α+β
    由AB∥CD,可得∠BOE3=∠DCE3=β
    ∵∠BAE3=∠BOE3+∠AE3C,
    ∴∠AE3C=α-β
    由AB∥CD,可得
    ∠BAE4+∠AE4C+∠DCE4=360°,
    ∴∠AE4C=360°-α-β
    ∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.

    【点睛】
    此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
    6、D
    【解析】
    过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.
    【详解】
    ∵S2=48,∴BC=4,过A作AH∥CD交BC于H,则∠AHB=∠DCB.
    ∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=1.
    ∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.
    故选D.

    【点睛】
    本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.
    7、B
    【解析】
    连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
    【详解】
    连接DF,

    ∵四边形ABCD是矩形

    在中,



    故选:B.
    【点睛】
    本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
    8、D
    【解析】
    根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
    【详解】
    解:根据题意画图如下:

    共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
    则抽到的书签正好是相对应的书名和作者姓名的概率是=;
    故选D.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    9、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    【点睛】
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    10、C
    【解析】
    试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
    B. 是轴对称图形,不是中心对称图形,故本选项错误;
    C. 既是中心对称图又是轴对称图形,故本选项正确;
    D. 是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、①②
    【解析】
    过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.
    【详解】
    过P作PM⊥y轴于M,PN⊥x轴于N
    ∵P(1,1),
    ∴PN=PM=1.
    ∵x轴⊥y轴,
    ∴∠MON=∠PNO=∠PMO=90°,
    ∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,
    ∴OM=ON=PN=PM=1,
    ∵∠MPA=∠APB=90°,
    ∴∠MPA=∠NPB.
    ∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
    ∴△MPA≌△NPB,
    ∴PA=PB,故①正确.
    ∵△MPA≌△NPB,
    ∴AM=BN,
    ∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
    当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
    ∵△MPA≌△NPB,
    ∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.
    ∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
    ,∵∠AOB+∠APB=180°,
    ∴点A、O、B、P共圆,且AB为直径,所以
    AB≥OP,故④错误.
    故答案为:①②.
    【点睛】
    本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON
    12、
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,
    所以两次都摸到红球的概率是,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    13、
    【解析】
    首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.
    【详解】
    ∵=2,
    ∴的算术平方根为.
    【点睛】
    本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.
    14、50
    【解析】
    由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得

    =,又由圆周角定理,可得∠AOD=50°.
    【详解】
    ∵CD是⊙O的直径,弦AB⊥CD,
    ∴=,
    ∵∠BCD=25°=,
    ∴∠AOD=2∠BCD=50°,
    故答案为50
    【点睛】
    本题考查角度的求解,解题的关键是利用垂径定理.
    15、20 5.1
    【解析】
    A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
    B、利用计算器计算可得.
    【详解】
    A、根据题意,此正多边形的边数为360°÷45°=8,
    则这个正多边形对角线的条数一共有=20,
    故答案为20;
    B、•tan63°27′≈2.646×2.001≈5.1,
    故答案为5.1.
    【点睛】
    本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
    16、73°
    【解析】
    试题解析:∵∠CBD=34°,
    ∴∠CBE=180°-∠CBD=146°,
    ∴∠ABC=∠ABE=∠CBE=73°.

    17、1
    【解析】
    如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.
    【详解】
    如图,作PQ⊥AB于Q,PR⊥BC于R.

    ∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.
    ∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.
    故答案为:1.
    【点睛】
    本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.

    三、解答题(共7小题,满分69分)
    18、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.
    【解析】
    (1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;
    (2)根据平均数、众数和中位数的定义求解即可.
    【详解】
    (Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),
    m%=×100%=40%,即m=40,
    故答案为:25、40;
    (Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
    则样本分知的平均数为(分),
    众数为75分,中位数为第13个数据,即75分.
    【点睛】
    理解两幅统计图中各数据的含义及其对应关系是解题关键.
    19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    20、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.
    【解析】
    试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
    综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
    ②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.
    试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,
    ∵P(a,b),半径为r,
    ∴AP1=(x﹣a)1+(y﹣b)1=r1.
    故答案为(x﹣a)1+(y﹣b)1=r1;
    综合应用:
    ①∵PO=PA,PD⊥OA,
    ∴∠OPD=∠APD.
    在△POB和△PAB中,

    ∴△POB≌△PAB,
    ∴∠POB=∠PAB.
    ∵⊙P与x轴相切于原点O,
    ∴∠POB=90°,
    ∴∠PAB=90°,
    ∴AB是⊙P的切线;
    ②存在到四点O,P,A,B距离都相等的点Q.
    当点Q在线段BP中点时,
    ∵∠POB=∠PAB=90°,
    ∴QO=QP=BQ=AQ.
    此时点Q到四点O,P,A,B距离都相等.
    ∵∠POB=90°,OA⊥PB,
    ∴∠OBP=90°﹣∠DOB=∠POA,
    ∴tan∠OBP==tan∠POA=.
    ∵P点坐标为(0,6),
    ∴OP=6,OB=OP=3.
    过点Q作QH⊥OB于H,如图3,
    则有∠QHB=∠POB=90°,
    ∴QH∥PO,
    ∴△BHQ∽△BOP,
    ∴===,
    ∴QH=OP=3,BH=OB=4,
    ∴OH=3﹣4=4,
    ∴点Q的坐标为(4,3),
    ∴OQ==5,
    ∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.

    考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.
    21、-1
    【解析】
    先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
    【详解】
    解:



    当时,原式.
    【点睛】
    本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
    22、 (1)1000;(2)54°;(3)见解析;(4)32万人
    【解析】
    根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
    【详解】
    解:
    (1)400÷40%=1000(人)
    (2)360°×=54°,
    故答案为:1000人; 54° ;
    (3)1-10%-9%-26%-40%=15%
    15%×1000=150(人)

    (4)80×=52.8(万人)
    答:总人数为52.8万人.
    【点睛】
    本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
    23、
    【解析】
    根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.
    【详解】
    如图:

    由已知可得:∠A=30°,∠B=60°,
    ∴△ABC为直角三角形,且∠C=90°,AB=10,
    ∴BC=AB·sin30°=10=5,
    AC=AB·cos30°=10=,
    ∴S△ABC=.
    【点睛】
    本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
    24、(1)证明见解析(2)3
    【解析】
    试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
    (2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴DC∥AB,即DF∥EB.
    又∵DF=BE,
    ∴四边形DEBF是平行四边形.
    ∵DE⊥AB,
    ∴∠EDB=90°.
    ∴四边形DEBF是矩形.
    (2)∵四边形DEBF是矩形,
    ∴DE=BF=4,BD=DF.
    ∵DE⊥AB,
    ∴AD===1.
    ∵DC∥AB,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB,
    ∴∠DAF=∠FAB.
    ∴∠DAF=∠DFA.
    ∴DF=AD=1.
    ∴BE=1.
    ∴AB=AE+BE=3+1=2.
    ∴S□ABCD=AB·BF=2×4=3.

    相关试卷

    河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。

    广东省广州市番禹区市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份广东省广州市番禹区市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届广东省广州市第二中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届广东省广州市第二中学初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了如图,在平面直角坐标系中,以A,这个数是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map