年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广东省江门市新会区中考数学押题试卷含解析

    2021-2022学年广东省江门市新会区中考数学押题试卷含解析第1页
    2021-2022学年广东省江门市新会区中考数学押题试卷含解析第2页
    2021-2022学年广东省江门市新会区中考数学押题试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省江门市新会区中考数学押题试卷含解析

    展开

    这是一份2021-2022学年广东省江门市新会区中考数学押题试卷含解析,共22页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    2.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)

    A.30.6米 B.32.1 米 C.37.9米 D.39.4米
    3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(  )
    A. B. C. D.
    4.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    5.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为(  )

    A.23 B.75 C.77 D.139
    6.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )

    A. B.
    C. D.
    7.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )

    A. B. C. D.
    8.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

    下面有三个推断:
    ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
    ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
    ③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
    其中合理的是(  )
    A.① B.② C.①② D.①③
    9.如果,那么代数式的值是( )
    A.6 B.2 C.-2 D.-6
    10.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    11.下面调查中,适合采用全面调查的是(  )
    A.对南宁市市民进行“南宁地铁1号线线路”
    B.对你安宁市食品安全合格情况的调查
    C.对南宁市电视台《新闻在线》收视率的调查
    D.对你所在的班级同学的身高情况的调查
    12.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
    A.﹣3 B.0 C.6 D.9
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.要使分式有意义,则x的取值范围为_________.
    14.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
    15.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.

    16.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.

    17.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.

    18.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.

    请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
    20.(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)

    21.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
    该班共有   名留守学生,B类型留守学生所在扇形的圆心角的度数为   ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
    22.(8分)已知关于的二次函数
    (1)当时,求该函数图像的顶点坐标.
    (2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
    (3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
    23.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    24.(10分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.

    25.(10分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

    26.(12分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
    根据图中信息求出m=   ,n=   ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
    27.(12分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
    (1)求∠C的度数;
    (2)求证:BC是⊙O的切线.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    2、D
    【解析】
    解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.

    3、C
    【解析】
    画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:.
    故答案为C.
    【点睛】
    本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
    4、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    5、B
    【解析】
    由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
    【详解】
    ∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
    ∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
    故选B.
    【点睛】
    本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
    6、B
    【解析】
    根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
    【详解】
    左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
    故选B.
    【点睛】
    本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
    7、C
    【解析】
    首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
    【详解】
    根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
    故选:C.
    【点睛】
    此题考查函数的图象,解题关键在于观察图形
    8、B
    【解析】
    ①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
    故选B.
    【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
    9、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    10、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    11、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】
    A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
    B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
    C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
    D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
    故选D.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    12、A
    【解析】
    解:∵x﹣2y=3,
    ∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≠1
    【解析】
    由题意得
    x-1≠0,
    ∴x≠1.
    故答案为x≠1.
    14、①③④
    【解析】
    分析:根据两个向量垂直的判定方法一一判断即可;
    详解:①∵2×(−1)+1×2=0,
    ∴与垂直;
    ②∵
    ∴与不垂直.
    ③∵
    ∴与垂直.
    ④∵
    ∴与垂直.
    故答案为:①③④.
    点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
    15、1.
    【解析】
    由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
    【详解】
    解:∵CD⊥AB,AB=16,
    ∴AD=DB=8,
    在Rt△OAD中,AB=16m,半径OA=10m,
    ∴OD==6,
    ∴CD=OC﹣OD=10﹣6=1(m).
    故答案为1.
    【点睛】
    本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
    16、1.
    【解析】
    根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD=BC=8,AB=CD=6,∠ABC=90°,

    ∵AO=OC,

    ∵AO=OC,AM=MD=4,

    ∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.
    故答案为:1.

    【点睛】
    本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.
    17、2
    【解析】
    分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.
    详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.
    ∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,
    ∴DC==5,∴AC=DC,
    在△APC与△DOC中,
    ∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,
    ∴△APC≌△DOC,∴AP=OD=3,
    ∴PB==2.
    故答案为2.

    点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.
    18、π
    【解析】
    试题分析:∵,∴S阴影===.故答案为.
    考点:旋转的性质;扇形面积的计算.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)10;(2)0.9;(3)44%
    【解析】
    (1)把条形统计图中每天的访问量人数相加即可得出答案;
    (2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
    (3)根据增长率的算数列出算式,再进行计算即可.
    【详解】
    (1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
    故答案为10;
    (2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
    ∴星期日学生日访问总量为:3×30%=0.9(万人次);
    故答案为0.9;
    (3)周六到周日学生访问该网站的日平均增长率为:=44%;
    故答案为44%.
    考点:折线统计图;条形统计图
    20、不满足安全要求,理由见解析.
    【解析】
    在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2

    相关试卷

    2023年广东省江门市新会区名冠实验学校中考数学一模试卷(含解析):

    这是一份2023年广东省江门市新会区名冠实验学校中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年广东省江门市新会区中考数学一模试卷(含解析):

    这是一份2023年广东省江门市新会区中考数学一模试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    广东省江门市培英初级中学2021-2022学年中考数学押题卷含解析:

    这是一份广东省江门市培英初级中学2021-2022学年中考数学押题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,计算x﹣2y﹣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map