2021-2022学年甘肃省张掖市城关初中重点中学中考适应性考试数学试题含解析
展开
这是一份2021-2022学年甘肃省张掖市城关初中重点中学中考适应性考试数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax1+bx+c,若,则的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
2.下列运算结果正确的是( )
A.3a2-a2 = 2 B.a2·a3= a6 C.(-a2)3 = -a6 D.a2÷a2 = a
3.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
A.2 B.-2 C.4 D.-4
4.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
6.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是( )
A.
B.
C.
D.
7.若代数式有意义,则实数x的取值范围是( )
A.x=0 B.x=3 C.x≠0 D.x≠3
8.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
9.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
10.若,则的值为( )
A.﹣6 B.6 C.18 D.30
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.
12.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.
13.分解因式:mx2﹣4m=_____.
14.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
15.计算:2a×(﹣2b)=_____.
16.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
17.计算=________.
三、解答题(共7小题,满分69分)
18.(10分)如图,,,,,交于点.求的值.
19.(5分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.
20.(8分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
21.(10分)如图,中,于,点分别是的中点.
(1)求证:四边形是菱形
(2)如果,求四边形的面积
22.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
23.(12分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
24.(14分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
2、C
【解析】
选项A, 3a2-a2 = 2 a2;选项B, a2·a3= a5;选项C, (-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.
3、C
【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
即16-4k=0,解得:k=4.
考点:一元二次方程根的判别式
4、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
5、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
6、C
【解析】
分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.
详解:
由被开方数越大算术平方根越大,
即
故选C.
点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.
7、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
8、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
9、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
10、B
【解析】
试题分析:∵,即,∴原式==
===﹣12+18=1.故选B.
考点:整式的混合运算—化简求值;整体思想;条件求值.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,
∴DC=,AD=1.
由旋转的性质可知:D′C′=,AD′=1,
∴tan∠D′AC′==,
∴∠D′AC′=60°.
∴∠BAB′=30°,
∴S△AB′C′=×1×=,
S扇形BAB′==.
S阴影=S△AB′C′-S扇形BAB′=-.
故答案为-.
【点睛】
错因分析 中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.
12、
【解析】
分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得,;
设AF=DF=x,则FG= ,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值
详解:
如图所示,过点D作DGAB于点G.
根据折叠性质,可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中,,;
设AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中,,
即=,
解得,
∴==.
故答案为.
点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.
13、m(x+2)(x﹣2)
【解析】
提取公因式法和公式法相结合因式分解即可.
【详解】
原式
故答案为
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
14、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
【点睛】
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
15、﹣4ab
【解析】
根据单项式与单项式的乘法解答即可.
【详解】
2a×(﹣2b)=﹣4ab.
故答案为﹣4ab.
【点睛】
本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.
16、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
17、1
【解析】
试题解析:3-2=1.
三、解答题(共7小题,满分69分)
18、
【解析】
试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.
解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.
在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.
在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.
19、576名
【解析】
试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.
试题解析:
本次调查的学生有:32÷16%=200(名),
体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),
补全的条形统计图如右图所示,
我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),
答:我校初三年级体重介于47kg至53kg的学生大约有576名.
20、20°
【解析】
依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.
【详解】
∵∠EFG=90°,∠E=35°,
∴∠FGH=55°,
∵GE平分∠FGD,AB∥CD,
∴∠FHG=∠HGD=∠FGH=55°,
∵∠FHG是△EFH的外角,
∴∠EFB=55°﹣35°=20°.
【点睛】
本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
21、 (1)证明见解析;(2).
【解析】
(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
【详解】
解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,点E、F分别是AB、AC的中点,
∴AE=AF,
∴AE=AF=DE=DF,
∴四边形AEDF是菱形;
(2)如图,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面积S=EF•AD=×5×5=.
【点睛】
本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
22、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
23、(1)AB=2;相等;(2)a=±;(3), .
【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
【详解】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
∴,(舍去),∴抛物线的“完美三角形”的斜边
②相等;
(2)∵抛物线与抛物线的形状相同,
∴抛物线与抛物线的“完美三角形”全等,
∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),∴.
(3)∵ 的最大值为-1,
∴ ,
∴ ,
∵抛物线的“完美三角形”斜边长为n,
∴抛物线的“完美三角形”斜边长为n,
∴B点坐标为,
∴代入抛物线,得,
∴ (不合题意舍去),
∴,
∴
24、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:1,
设PF=5x,CF=1x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+10x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=17.1.
答:从P到点B的路程约为17.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
相关试卷
这是一份甘肃省渭源县重点中学2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了分式有意义,则x的取值范围是,的相反数是,计算的结果是等内容,欢迎下载使用。
这是一份2022年甘肃省重点中学中考适应性考试数学试题含解析,共22页。试卷主要包含了已知点A,函数的图像位于,下列图形是轴对称图形的有等内容,欢迎下载使用。
这是一份2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析,共17页。试卷主要包含了化简的结果是,二次函数,计算的值为等内容,欢迎下载使用。