|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析
    立即下载
    加入资料篮
    2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析01
    2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析02
    2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析

    展开
    这是一份2021-2022学年甘肃省武威市民勤县市级名校中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图,已知点A,如图,弹性小球从点P,如图所示,有一条线段是.等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(  )
    A. B. C. D.
    2.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )

    A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
    3.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
    A. B. C. D.
    4.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于( )

    A.90° B.120° C.60° D.30°
    5.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为(  )
    A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
    6.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为(  )

    A.73 B.81 C.91 D.109
    7.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是(  )

    A.(1,4) B.(4,3) C.(2,4) D.(4,1)
    8.如图所示,有一条线段是()的中线,该线段是( ).

    A.线段GH B.线段AD C.线段AE D.线段AF
    9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
    的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
    如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是( )

    A.①②③ B.仅有①② C.仅有①③ D.仅有②③
    10.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
    A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
    11.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为(  )

    A. B. C. D.
    12.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.

    14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.

    15.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.

    16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积
    为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;
    取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;
    如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.
    17.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.
    18.已知,,,是成比例的线段,其中,,,则_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
    (1)求实数k的取值范围;
    (2)写出满足条件的k的最大整数值,并求此时方程的根.
    20.(6分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?

    21.(6分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.

    22.(8分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.

    23.(8分)问题提出
    (1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB   ∠ACB(填“>”“<”“=”);
    问题探究
    (2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
    问题解决
    (3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

    24.(10分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围.

    25.(10分)如图,已知抛物线经过,两点,顶点为.

    (1)求抛物线的解析式;
    (2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
    (3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
    26.(12分)下面是一位同学的一道作图题:
    已知线段a、b、c(如图),求作线段x,使

    他的作法如下:
    (1)以点O为端点画射线,.
    (2)在上依次截取,.
    (3)在上截取.
    (4)联结,过点B作,交于点D.
    所以:线段________就是所求的线段x.
    ①试将结论补完整
    ②这位同学作图的依据是________
    ③如果,,,试用向量表示向量.
    27.(12分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
    【详解】
    A、不是轴对称图形,故A不符合题意;
    B、不是轴对称图形,故B不符合题意;
    C、不是轴对称图形,故C不符合题意;
    D、是轴对称图形,故D符合题意.
    故选D.
    【点睛】
    本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    2、C
    【解析】
    根据平行线性质和全等三角形的判定定理逐个分析.
    【详解】
    由,得∠B=∠D,
    因为,
    若≌,则还需要补充的条件可以是:
    AB=DE,或∠E=∠A, ∠EFD=∠ACB,
    故选C
    【点睛】
    本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
    3、A
    【解析】
    分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
    ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
    详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
    概率为.
    故选A.
    点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    4、C
    【解析】
    解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.
    点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
    5、C
    【解析】
    先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
    【详解】
    解:∵一个正方形花坛的面积为,其边长为,


    则a的取值范围为:.
    故选:C.
    【点睛】
    此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
    6、C
    【解析】
    试题解析:第①个图形中一共有3个菱形,3=12+2;
    第②个图形中共有7个菱形,7=22+3;
    第③个图形中共有13个菱形,13=32+4;
    …,
    第n个图形中菱形的个数为:n2+n+1;
    第⑨个图形中菱形的个数92+9+1=1.
    故选C.
    考点:图形的变化规律.
    7、D
    【解析】
    先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
    【详解】
    由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
    【点睛】
    本题主要考察规律的探索,注意观察规律是解题的关键.
    8、B
    【解析】
    根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
    【详解】
    根据三角形中线的定义知:线段AD是△ABC的中线.
    故选B.
    【点睛】
    本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    9、A
    【解析】
    解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
    ∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
    ∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
    ∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m. 因此②正确.
    ∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s. 因此③正确.
    终上所述,①②③结论皆正确.故选A.
    10、B
    【解析】
    试题分析:“960万”用科学记数法表示为9.6×106,故选B.
    考点:科学记数法—表示较大的数.
    11、C
    【解析】
    过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
    【详解】
    解:如图,过点A作AF⊥DE于F,

    在矩形ABCD中,AB=CD,
    ∵AE平分∠BED,
    ∴AF=AB,
    ∵BC=2AB,
    ∴BC=2AF,
    ∴∠ADF=30°,
    在△AFD与△DCE中
    ∵∠C=∠AFD=90°,
    ∠ADF=∠DEC,
    AF=DC,,
    ∴△AFD≌△DCE(AAS),
    ∴△CDE的面积=△AFD的面积=
    ∵矩形ABCD的面积=AB•BC=2AB2,
    ∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
    ∴△ABE的面积=,
    ∴,
    故选:C.
    【点睛】
    本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
    12、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或5或1.
    【解析】
    根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
    【详解】
    解:如图
    (1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
    (2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
    (3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
    则AN=3,AC=,AD=m,
    得:,得m=,
    综上所述:m为或5或1,
    所以答案:或5或1.
    【点睛】
    本题主要考查等腰三角形的性质,注意分类讨论的完整性.
    14、36°或37°.
    【解析】
    分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.
    详解:如图,过E作EG∥AB,

    ∵AB∥CD,
    ∴GE∥CD,
    ∴∠BAE=∠AEG,∠DFE=∠GEF,
    ∴∠AEF=∠BAE+∠DFE,
    设∠CEF=x,则∠AEC=2x,
    ∴x+2x=∠BAE+60°,
    ∴∠BAE=3x-60°,
    又∵6°<∠BAE<15°,
    ∴6°<3x-60°<15°,
    解得22°<x<25°,
    又∵∠DFE是△CEF的外角,∠C的度数为整数,
    ∴∠C=60°-23°=37°或∠C=60°-24°=36°,
    故答案为:36°或37°.
    点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
    15、
    【解析】
    过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
    【详解】
    解:过点B作BF⊥OC于点F,

    由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
    ∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
    ∵,
    ∴,,
    ∵AD∥BF
    ∴S△BCF∽S△ACD,
    又∵,
    ∴BF:AD=2:5,
    ∵S△OAD=S△OBF,
    ∴×OD×AD =×OF×BF
    ∴BF:AD=2:5= OD:OF
    易证:S△OED∽S△OBF,
    ∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
    ∵S四边形EDFB=,
    ∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
    ∴k=2 S△OBF=.
    故答案为.
    【点睛】
    本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
    16、
    【解析】
    ∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的,
    ∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的.
    同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,
    ∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的.
    17、4π
    【解析】
    根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.
    18、
    【解析】
    如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
    【详解】
    已知a,b,c,d是成比例线段,
    根据比例线段的定义得:ad=cb,
    代入a=3,b=2,c=6,
    解得:d=4,
    则d=4cm.
    故答案为:4
    【点睛】
    本题主要考查比例线段的定义.要注意考虑问题要全面.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2) ,
    【解析】
    【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;
    (2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.
    【详解】(1) 依题意,得,
    解得且;
    (2) ∵是小于9的最大整数,

    此时的方程为,
    解得,.
    【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.
    20、商人盈利的可能性大.
    【解析】
    试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
    试题解析:商人盈利的可能性大.
    商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
    21、(1)详见解析;(2)80°.
    【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【解析】
    (1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【详解】
    证明:(1)∵AC=AD,
    ∴∠ACD=∠ADC,
    又∵∠BCD=∠EDC=90°,
    ∴∠ACB=∠ADE,
    在△ABC和△AED中,

    ∴△ABC≌△AED(SAS);
    解:(2)当∠B=140°时,∠E=140°,
    又∵∠BCD=∠EDC=90°,
    ∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
    【点睛】
    考点:全等三角形的判定与性质.
    22、BF的长度是1cm.
    【解析】
    利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
    【详解】
    解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
    ∴△BEF∽△CDF;
    ∴=,
    又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
    ∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
    ∴=,
    解得:BF=1.
    即:BF的长度是1cm.
    【点睛】
    本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
    23、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
    【解析】
    (1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
    (2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
    (3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
    【详解】
    解:(1)∠AEB>∠ACB,理由如下:

    如图1,过点E作EF⊥AB于点F,
    ∵在矩形ABCD中,AB=2AD,E为CD中点,
    ∴四边形ADEF是正方形,
    ∴∠AEF=45°,
    同理,∠BEF=45°,
    ∴∠AEB=90°.
    而在直角△ABC中,∠ABC=90°,
    ∴∠ACB<90°,
    ∴∠AEB>∠ACB.
    故答案为:>;
    (2)当点P位于CD的中点时,∠APB最大,理由如下:
    假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,

    在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
    ∵∠AFB是△EFB的外角,
    ∴∠AFB>∠AEB,
    ∵∠AFB=∠APB,
    ∴∠APB>∠AEB,
    故点P位于CD的中点时,∠APB最大:
    (3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,

    以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
    由题意知DP=OQ=,
    ∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
    BD=11.6米, AB=3米,CD=EF=1.6米,
    ∴OA=11.6+3﹣1.6=13米,
    ∴DP=米,
    即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
    【点睛】
    本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
    24、(1);(2).
    【解析】
    (1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;
    (2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x的取值范围.
    【详解】
    解:(1)由二次函数的图象经过和两点,
    得,
    解这个方程组,得

    抛物线的解析式为,
    (2)令,得.
    解这个方程,得,.
    ∴此二次函数的图象与轴的另一个交点的坐标为.
    当时,.
    【点睛】
    本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.
    25、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
    【解析】
    分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
    (2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
    可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
    (3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
    详解: (1)已知抛物线经过,,
    ∴,解得,
    ∴所求抛物线的解析式为.
    (2)∵,,∴,,
    可得旋转后点的坐标为.
    当时,由得,
    可知抛物线过点.
    ∴将原抛物线沿轴向下平移1个单位长度后过点.
    ∴平移后的抛物线解析式为:.
    (3)∵点在上,可设点坐标为,
    将配方得,∴其对称轴为.由题得B1(0,1).
    ①当时,如图①,

    ∵,
    ∴,
    ∴,
    此时,
    ∴点的坐标为.
    ②当时,如图②,

    同理可得,
    ∴,
    此时,
    ∴点的坐标为.
    综上,点的坐标为或.
    点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
    26、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
    【解析】
    ①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
    【详解】
    ①∵,
    ∴OA:AB=OC:CD,
    ∵,,,,
    ∴线段就是所求的线段x,
    故答案为:
    ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    ③∵、,且,
    ∴,
    ∴,即,
    ∴,
    ∴.
    【点睛】
    本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
    27、 (1)详见解析;(2)4.
    【解析】
    试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
    试题解析:

    (1)连结OD,
    ∵AD平分∠BAC,
    ∴∠DAE=∠DAB,
    ∵OA=OD,
    ∴∠ODA=∠DAO,
    ∴∠ODA=∠DAE,
    ∴OD∥AE,
    ∵DE⊥AC
    ∴OE⊥DE
    ∴DE是⊙O的切线;
    (2)过点O作OF⊥AC于点F,
    ∴AF=CF=3,
    ∴OF=,
    ∵∠OFE=∠DEF=∠ODE=90°,
    ∴四边形OFED是矩形,
    ∴DE=OF=4.
    考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.

    相关试卷

    浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析,共19页。

    辽宁省鞍山市市级名校2021-2022学年中考数学猜题卷含解析: 这是一份辽宁省鞍山市市级名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。

    2022届云南省开远市市级名校中考数学猜题卷含解析: 这是一份2022届云南省开远市市级名校中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程的解为,若关于x的一元二次方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map