2021-2022学年广东省惠州市惠阳高级中学中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( )
A.(1,1) B.(,) C.(1,3) D.(1,)
2.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( )
年龄(岁)
12
13
14
15
16
人数
1
2
2
5
2
A.2,14岁 B.2,15岁 C.19岁,20岁 D.15岁,15岁
3.已知函数的图象与x轴有交点.则的取值范围是( )
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
4.某青年排球队12名队员年龄情况如下:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
5.如图所示,有一条线段是()的中线,该线段是( ).
A.线段GH B.线段AD C.线段AE D.线段AF
6.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
7.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A. B.
C. D.
8.下列说法中,正确的是( )
A.长度相等的弧是等弧
B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
C.经过半径并且垂直于这条半径的直线是圆的切线
D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
9.估计的值在 ( )
A.4和5之间 B.5和6之间
C.6和7之间 D.7和8之间
10.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
12.二次根式 中的字母a的取值范围是_____.
13.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).
14.计算_______.
15.如果m,n互为相反数,那么|m+n﹣2016|=___________.
16.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
三、解答题(共8题,共72分)
17.(8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
18.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
(1)小明选择去郊游的概率为多少;
(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
19.(8分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ.
(1)当∠POQ= 时,PQ有最大值,最大值为 ;
(2)如图2,若P是OB中点,且QP⊥OB于点P,求的长;
(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.
20.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
21.(8分)阅读下面材料:
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
操作步骤
作法
由操作步骤推断(仅选取部分结论)
第一步
在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
(i)△EAF≌△BAF(判定依据是①);
(ii)△CEF是等腰直角三角形;
(iii)用含a1的式子表示a2为②:
第二步
以CE为边构造第二个正方形CEFG;
第三步
在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
(iv)用只含a1的式子表示a3为③:
第四步
以CH为边构造第三个正方形CHIJ
这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
22.(10分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:
(1)样本中的总人数为 人;扇形统计十图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
23.(12分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
24.解不等式:﹣≤1
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
【详解】
A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,
B选项(,) 到坐标原点的距离为=2,因此点在圆上,
C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外
D选项(1,) 到坐标原点的距离为<2,因此点在圆内,
故选B.
【点睛】
本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
2、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了5次,最多,故为众数为1;
按大小排列第6和第7个数均是1,所以中位数是1.
故选D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
3、B
【解析】
试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
4、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
5、B
【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
【详解】
根据三角形中线的定义知:线段AD是△ABC的中线.
故选B.
【点睛】
本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
6、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
7、D
【解析】
解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
当点Q在BC上时,如下图所示:
∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
8、D
【解析】
根据切线的判定,圆的知识,可得答案.
【详解】
解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
故选:D.
【点睛】
本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
9、C
【解析】
根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
【详解】
解:∵
即
故选:C.
【点睛】
本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
10、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
【详解】
解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
解得:x=或(舍去).
故答案为.
【点睛】
本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
12、a≥﹣1.
【解析】
根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.
【详解】
由分析可得,a+1≥0,
解得:a≥﹣1.
【点睛】
熟练掌握二次根式被开方数为非负数是解答本题的关键.
13、①②③
【解析】
依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
【详解】
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,故①正确;
∵∠DCF=90°﹣60°=30°,
∴tan∠DCF=,
∵△DFP∽△BPH,
∴,
∵BP=CP=CD,
∴,故②正确;
∵PC=DC,∠DCP=30°,
∴∠CDP=75°,
又∵∠DHP=∠DCH+∠CDH=75°,
∴∠DHP=∠CDP,而∠DPH=∠CPD,
∴△DPH∽△CPD,
∴,即PD2=PH•CP,
又∵CP=CD,
∴PD2=PH•CD,故③正确;
如图,过P作PM⊥CD,PN⊥BC,
设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
=×4×2+×2×4﹣×4×4
=4+4﹣8
=4﹣4,
∴,故④错误,
故答案为:①②③.
【点睛】
本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.
14、
【解析】
根据同底数幂的乘法法则计算即可.
【详解】
故答案是:
【点睛】
本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
15、1.
【解析】
试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
考点:1.绝对值的意义;2.相反数的性质.
16、18π
【解析】解:设圆锥的半径为 ,母线长为 .则
解得
三、解答题(共8题,共72分)
17、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.
【解析】
:(1)原来一天可获利:20×100=2000元;
(2)①y=(20-x)(100+10x)=-10(x2-10x-200),
由-10(x2-10x-200)=2160,
解得:x1=2,x2=8,
∴每件商品应降价2或8元;
②观察图像可得
18、(1);(2).
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
【详解】
(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
∴小明选择去郊游的概率=;
(2)列表得:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
所以小明和小亮的选择结果相同的概率==.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
19、(1);(2);(3)
【解析】
(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;
(2)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(3)先在Rt△B'OP中,OP2+ = ,解得OP= ,最后用面积的和差即可得出结论.
【详解】
解:(1)∵P是半径OB上一动点,Q是 上的一动点,
∴当PQ取最大时,点Q与点A重合,点P与点B重合,
此时,∠POQ=90°,PQ= ,
故答案为:90°,10 ;
(2)解:如图,连接OQ,
∵点P是OB的中点,
∴OP=OB= OQ.
∵QP⊥OB,
∴∠OPQ=90°
在Rt△OPQ中,cos∠QOP= ,
∴∠QOP=60°,
∴lBQ ;
(3)由折叠的性质可得, ,
在Rt△B'OP中,OP2+ =,
解得OP=,
S阴影=S扇形AOB﹣2S△AOP=.
【点睛】
此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.
20、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
21、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
④同理可得an=(-1)n-1a1;
(2)根据题意画图即可.
【详解】
解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
理由是:如图1,在Rt△EAF和Rt△BAF中,
∵,
∴Rt△EAF≌Rt△BAF(HL);
②∵四边形ABCD是正方形,
∴AB=BC=a1,∠ABC=90°,
∴AC=a1,
∵AE=AB=a1,
∴CE=a2=a1﹣a1=(﹣1)a1;
③∵四边形CEFG是正方形,
∴△CEF是等腰直角三角形,
∴CF=CE=(-1)a1,
∵FH=EF=a2,
∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
④同理可得:an=(-1)n-1a1;
故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
(2)所画正方形CHIJ见右图.
22、 (1) 80、72;(2) 16人;(3) 50人
【解析】
(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.
(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.
(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.
【详解】
解:(1)样本中的总人数为8÷10%=80人,
∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,
∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°
(2)骑自行车的人数为80×20%=16人,
补全图形如下:
(3)设原来开私家车的人中有x人改骑自行车,
由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,
解得:x≥50,
∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
【点睛】
本题主要考查统计图表和一元一次不等式的应用。
23、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
【解析】
(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
【详解】
解:(1)将点A、B坐标代入二次函数表达式得:,
解得:,
故抛物线的表达式为:y=x2+6x+5…①,
令y=0,则x=﹣1或﹣5,
即点C(﹣1,0);
(2)①如图1,过点P作y轴的平行线交BC于点G,
将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=x+1…②,
设点G(t,t+1),则点P(t,t2+6t+5),
S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
∵-<0,
∴S△PBC有最大值,当t=﹣时,其最大值为;
②设直线BP与CD交于点H,
当点P在直线BC下方时,
∵∠PBC=∠BCD,
∴点H在BC的中垂线上,
线段BC的中点坐标为(﹣,﹣),
过该点与BC垂直的直线的k值为﹣1,
设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
直线BC中垂线的表达式为:y=﹣x﹣4…③,
同理直线CD的表达式为:y=2x+2…④,
联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
同理可得直线BH的表达式为:y=x﹣1…⑤,
联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
故点P(﹣,﹣);
当点P(P′)在直线BC上方时,
∵∠PBC=∠BCD,∴BP′∥CD,
则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
即直线BP′的表达式为:y=2x+5…⑥,
联立①⑥并解得:x=0或﹣4(舍去﹣4),
故点P(0,5);
故点P的坐标为P(﹣,﹣)或(0,5).
【点睛】
本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
24、x≥.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
2(2﹣3x)﹣3(x﹣1)≤6,
4﹣6x﹣3x+3≤6,
﹣6x﹣3x≤6﹣4﹣3,
﹣9x≤﹣1,
x≥.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
2023-2024学年广东省惠州市惠阳高级中学七年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年广东省惠州市惠阳高级中学七年级(上)期末数学试卷(含详细答案解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省惠州市惠阳高级中学七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年广东省惠州市惠阳高级中学七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省惠州市惠阳区中考数学一模试卷(含解析): 这是一份2023年广东省惠州市惠阳区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。