|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析01
    2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析02
    2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析

    展开
    这是一份2021-2022学年广东省佛山市名校中考数学模拟预测试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,学校小组名同学的身高,已知点 A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为( )

    A.2 B.-2 C.4 D.-4
    2.下列计算正确的是( )
    A. B. C. D.
    3.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为(  )

    A. B. C. D.
    4.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

    A.130° B.120° C.110° D.100°
    5.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=( )

    A. B. C.12 D.24
    6.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
    A. B. C. D.
    7.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是(  )

    A. B.5 C.6 D.
    8.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    9.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    10.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )
    A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
    11.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )

    A.15m B.25m C.30m D.20m
    12.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    14.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.

    15.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.

    16.一组数据7,9,8,7,9,9,8的中位数是__________
    17.如图,在每个小正方形边长为的网格中,的顶点,,均在格点上,为边上的一点.
    线段的值为______________;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)___________.
    18.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.

    20.(6分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.

    (1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
    (2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
    (3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
    ①求a,b,m满足的关系式;
    ②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
    21.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)

    22.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.

    23.(8分)如图,内接于,,的延长线交于点.

    (1)求证:平分;
    (2)若,,求和的长.
    24.(10分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
    (1)求∠EPF的大小;
    (2)若AP=6,求AE+AF的值.

    25.(10分)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.

    26.(12分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

    请根据图中的信息,回答下列问题:
    (1)这次抽样调查中共调查了  人;
    (2)请补全条形统计图;
    (3)扇形统计图中18﹣23岁部分的圆心角的度数是  ;
    (4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数
    27.(12分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
    例如:求点到直线的距离. 
    解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.
    【详解】
    过点、作轴,轴,分别于、,

    设点的坐标是,则,,








    ,,
    因为点在反比例函数的图象上,则,
    点在反比例函数的图象上,点的坐标是,
    .
    故选:.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.
    2、A
    【解析】
    原式各项计算得到结果,即可做出判断.
    【详解】
    A、原式=,正确;
    B、原式不能合并,错误;
    C、原式=,错误;
    D、原式=2,错误.
    故选A.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    3、D
    【解析】
    如图,连接AB,

    由圆周角定理,得∠C=∠ABO,
    在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
    ∴.
    故选D.
    4、D
    【解析】
    分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
    详解:∵


    故选D.
    点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    5、A
    【解析】
    解:如图,设对角线相交于点O,
    ∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,
    由勾股定理的,AB===5,
    ∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,
    即5DH=×8×6,解得DH=.
    故选A.

    【点睛】
    本题考查菱形的性质.
    6、C
    【解析】
    根据中位数的定义进行解答
    【详解】
    将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
    【点睛】
    本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
    7、B
    【解析】
    易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
    【详解】
    若点E在BC上时,如图

    ∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
    ∴∠CFE=∠AEB,
    ∵在△CFE和△BEA中,

    ∴△CFE∽△BEA,
    由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
    ∴,
    当y=时,代入方程式解得:x1=(舍去),x2=,
    ∴BE=CE=1,∴BC=2,AB=,
    ∴矩形ABCD的面积为2×=5;
    故选B.
    【点睛】
    本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
    8、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.
    9、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
    10、D
    【解析】
    【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
    【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
    ∵x1+x2<0,x1x2<0,
    ∴x1、x2异号,且负数的绝对值大,故C选项错误;
    ∵x1为一元二次方程2x2+2x﹣1=0的根,
    ∴2x12+2x1﹣1=0,
    ∴x12+x1=,故D选项正确,
    故选D.
    【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
    11、D
    【解析】
    根据三角形的中位线定理即可得到结果.
    【详解】
    解:由题意得AB=2DE=20cm,
    故选D.
    【点睛】
    本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    12、C
    【解析】
    由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
    【详解】
    详解:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,



    ∴AQ⊥DP;
    故①正确;
    ②无法证明,故错误.
    ∵BP=1,AB=3,



    ∴ 故③正确,
    故选C.
    【点睛】
    考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
    14、4.8或
    【解析】
    根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
    【详解】
    ①CP和CB是对应边时,△CPQ∽△CBA,
    所以=,
    即=,
    解得t=4.8;
    ②CP和CA是对应边时,△CPQ∽△CAB,
    所以=,
    即=,
    解得t=.
    综上所述,当t=4.8或时,△CPQ与△CBA相似.
    【点睛】
    此题主要考查相似三角形的性质,解题的关键是分情况讨论.
    15、
    【解析】
    分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
    【详解】
    第1个图形中有1+3×1=4个★,
    第2个图形中有1+3×2=7个★,
    第3个图形中有1+3×3=10个★,
    第4个图形中有1+3×4=13个★,
    第5个图形中有1+3×5=16个★,

    第n个图形中有1+3×n=(3n+1)个★.
    故答案是:1+3n.
    【点睛】
    考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
    16、1
    【解析】
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得.
    【详解】
    解:将数据重新排列为7、7、1、1、9、9、9,
    所以这组数据的中位数为1,
    故答案为1.
    【点睛】
    本题主要考查中位数,解题的关键是掌握中位数的定义.
    17、(Ⅰ) (Ⅱ)如图,取格点、,连接与交于点,连接与交于点.
    【解析】
    (Ⅰ)根据勾股定理进行计算即可.
    (Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出是的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时的值最小.
    【详解】
    (Ⅰ)根据勾股定理得AC=;
    故答案为:1.
    (Ⅱ)如图,如图,取格点、,连接与交于点,连接与交于点,则点P即为所求.

    说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.
    【点睛】
    本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    18、1
    【解析】
    试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.
    解:∵同一时刻物高与影长成正比例.
    设旗杆的高是xm.
    ∴1.6:1.2=x:9
    ∴x=1.
    即旗杆的高是1米.
    故答案为1.
    考点:相似三角形的应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    解:不公平,理由如下:
    列表得:

    1
    2
    3
    2
    1,2
    2,2
    3,2
    3
    1,3
    2,3
    3,3
    4
    1,4
    2,4
    3,4
    由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,
    则甲获胜的概率为、乙获胜的概率为,
    ∵,
    ∴这个游戏对甲、乙双方不公平.
    【点睛】
    考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    20、(1)45;(m,﹣m);(2)相似;(3)①;②.
    【解析】
    试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;
    (2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;
    (3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;
    ②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围.
    试题解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为45;m,﹣m;
    (2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为,∵抛物线过点E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;
    (3)①当点E与点O重合时,E(0,0),∵抛物线过点E,A,∴,整理得:,即;
    ②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;
    若抛物线过点A(2m,2m),则,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为.
    考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.
    21、
    【解析】
    【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解
    【详解】列表如下:

    A1
    A2
    B
    A1
    (A1,A1)
    (A2,A1)
    (B,A1)
    A2
    (A1,A2)
    (A2,A2)
    (B,A2)
    B
    (A1,B)
    (A2,B)
    (B,B)
    由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,
    所以抽出的两张卡片上的图案都是“金鱼”的概率为.
    【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    22、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
    23、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.

    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.

    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    24、(1)∠EPF=120°;(2)AE+AF=6.
    【解析】
    试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证.
    试题解析:
    (1)如图1,过点P作PG⊥EF于G,
    ∵PE=PF,
    ∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
    在△FPG中,sin∠FPG= ,
    ∴∠FPG=60°,
    ∴∠EPF=2∠FPG=120°;

    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
    ∵四边形ABCD是菱形,
    ∴AD=AB,DC=BC,
    ∴∠DAC=∠BAC,
    ∴PM=PN,
    在Rt△PME于Rt△PNF中,

    ∴Rt△PME≌Rt△PNF,
    ∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM= ∠DAB=30°,
    ∴AM=AP•cos30°=3 ,同理AN=3 ,
    ∴AE+AF=(AM-EM)+(AN+NF)=6.
    【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.
    25、见解析
    【解析】
    由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证.
    【详解】
    解:∵∠1=∠2,
    ∴∠1+∠AED=∠2+∠AED,
    即∠BED=∠AEC,
    在△BED和△AEC中,

    ∴△BED≌△AEC(ASA),
    ∴ED=EC.
    【点睛】
    本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    26、 (1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万
    【解析】
    试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;
    (2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;
    (3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;
    (4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.
    试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.
    故答案为1500 ;
    (2)1500-450-420-330=300人.
    补全的条形统计图如图:

    (3)18-23岁这一组所对应的圆心角的度数为360×=108°.
    故答案为108° ;
    (4)(300+450)÷1500=50%,.
    考点:条形统计图;扇形统计图.
    27、(1)点P在直线上,说明见解析;(2).
    【解析】
    解:(1) 求:(1)直线可变为,
    说明点P在直线上;
    (2)在直线上取一点(0,1),直线可变为
    则,
    ∴这两条平行线的距离为.

    相关试卷

    黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析,共17页。试卷主要包含了的绝对值是等内容,欢迎下载使用。

    2021-2022学年广东省清远市市级名校中考数学模拟预测题含解析: 这是一份2021-2022学年广东省清远市市级名校中考数学模拟预测题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程有实数根,则满足等内容,欢迎下载使用。

    2021-2022学年广东省汕头市名校中考数学模拟预测试卷含解析: 这是一份2021-2022学年广东省汕头市名校中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集是,这个数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map