终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析第1页
    2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析第2页
    2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析

    展开

    这是一份2021-2022学年广东省江门市恩平市中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,有一组数据,今年春节某一天早7,花园甜瓜是乐陵的特色时令水果,的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为(  )

    A.2 B.4 C.2 D.4
    2.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是(  )

    A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
    3.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为  

    A. B. C. D.
    4.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
    A. B. C. D.
    5.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    6.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    7.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为(  )kg.
    A.180 B.200 C.240 D.300
    8.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    9.的相反数是(  )
    A. B.﹣ C.﹣ D.
    10.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为(  )
    A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
    12.不等式组有2个整数解,则m的取值范围是_____.
    13.反比例函数y = 的图像经过点(2,4),则k的值等于__________.
    14.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
    摸球的次数n
    100
    150
    200
    500
    800
    1000
    摸到白球的次数m
    58
    96
    116
    295
    484
    601
    摸到白球的频率m/n
    0.58
    0.64
    0.58
    0.59
    0.605
    0.601

    15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.

    16.计算=_____.
    三、解答题(共8题,共72分)
    17.(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    18.(8分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    19.(8分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
    由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    20.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.

    21.(8分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.

    22.(10分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.

    (1)求抛物线的解析式;
    (2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
    (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
    23.(12分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.
    (1)小张如何进货,使进货款恰好为1300元?
    (2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
    24.地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据等腰三角形的性质和勾股定理解答即可.
    【详解】
    解:∵点A,D分别对应数轴上的实数﹣2,2,
    ∴AD=4,
    ∵等腰△ABC的底边BC与底边上的高AD相等,
    ∴BC=4,
    ∴CD=2,
    在Rt△ACD中,AC=,
    故选:C.
    【点睛】
    此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
    2、D
    【解析】
    由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
    【详解】
    解:∵△OAB绕O点逆时针旋转60°得到△OCD,
    ∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
    则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
    ∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
    故选D.
    【点睛】
    本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
    3、A
    【解析】
    由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;
    【详解】
    函数与的图象在第二象限交于点,

    与反比例函数都是关于直线对称,
    与B关于直线对称,





    故选:A.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.
    4、D
    【解析】
    试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
    试题解析:画树状图如下:

    共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
    故选D.
    考点:列表法与树状法.
    5、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    6、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
    7、B
    【解析】
    根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
    【详解】
    解:设小李所进甜瓜的数量为,根据题意得:

    解得:,
    经检验是原方程的解.
    答:小李所进甜瓜的数量为200kg.
    故选:B.
    【点睛】
    本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
    8、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.
    9、B
    【解析】
    一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.
    【详解】
    解:的相反数是﹣.
    故选:B.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    10、C
    【解析】
    科学记数法的表示形式为a×10 的形式,其中1≤a|1时,n是正数;当原数的绝对值0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
    【点睛】
    本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
    12、1<m≤2
    【解析】
    首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
    【详解】
    不等式组有个整数解,
    其整数解有、这个,
    .
    故答案为:.
    【点睛】
    此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
    13、1
    【解析】
    解:∵点(2,4)在反比例函数的图象上,∴,即k=1.故答案为1.
    点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.
    14、0.1
    【解析】
    根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
    【详解】
    解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
    则P白球=0.1.
    故答案为0.1.
    【点睛】
    本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
    15、5.
    【解析】
    试题解析:过E作EM⊥AB于M,

    ∵四边形ABCD是正方形,
    ∴AD=BC=CD=AB,
    ∴EM=AD,BM=CE,
    ∵△ABE的面积为8,
    ∴×AB×EM=8,
    解得:EM=4,
    即AD=DC=BC=AB=4,
    ∵CE=3,
    由勾股定理得:BE==5.
    考点:1.正方形的性质;2.三角形的面积;3.勾股定理.
    16、0
    【解析】
    分析:先计算乘方、零指数幂,再计算加减可得结果.
    详解:1-1=0
    故答案为0.
    点睛:零指数幂成立的条件是底数不为0.

    三、解答题(共8题,共72分)
    17、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    18、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    19、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    20、(1)见解析(2)
    【解析】
    (1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
    (2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
    【详解】
    解:(1)连接OE,BE,
    ∵DE=EF,
    ∴=
    ∴∠OBE=∠DBE
    ∵OE=OB,
    ∴∠OEB=∠OBE
    ∴∠OEB=∠DBE,
    ∴OE∥BC
    ∵⊙O与边AC相切于点E,
    ∴OE⊥AC
    ∴BC⊥AC
    ∴∠C=90°
    (2)在△ABC,∠C=90°,BC=3,sinA=,
    ∴AB=5,
    设⊙O的半径为r,则AO=5﹣r,
    在Rt△AOE中,sinA=



    【点睛】
    本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
    21、见解析
    【解析】
    由菱形的性质可得,,然后根据角角边判定,进而得到.
    【详解】
    证明:∵菱形ABCD,
    ∴,,
    ∵,,
    ∴,
    在与中,

    ∴,
    ∴.
    【点睛】
    本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
    22、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).
    【解析】
    (1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
    (2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
    (1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.
    【详解】
    解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
    ∴y=2x﹣6,
    令y=0,解得:x=1,
    ∴B的坐标是(1,0).
    ∵A为顶点,
    ∴设抛物线的解析为y=a(x﹣1)2﹣4,
    把B(1,0)代入得:4a﹣4=0,
    解得a=1,
    ∴y=(x﹣1)2﹣4=x2﹣2x﹣1.
    (2)存在.
    ∵OB=OC=1,OP=OP,
    ∴当∠POB=∠POC时,△POB≌△POC,
    此时PO平分第二象限,即PO的解析式为y=﹣x.
    设P(m,﹣m),则﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),
    ∴P(,).
    (1)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
    ∴,即=,∴DQ1=,
    ∴OQ1=,即Q1(0,-);
    ②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
    ∴,即,
    ∴OQ2=,即Q2(0,);
    ③如图,当∠AQ1B=90°时,作AE⊥y轴于E,

    则△BOQ1∽△Q1EA,
    ∴,即
    ∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,
    即Q1(0,﹣1),Q4(0,﹣1).
    综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣1).
    23、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【解析】
    (1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;
    (2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.
    【详解】
    (1)设A种文具进货x只,B种文具进货只,由题意得:

    解得:x=40,

    答:A种文具进货40只,B种文具进货60只;
    (2)设购进A型文具a只,则有,且;
    解得:,
    ∵a为整数,
    ∴a=48、49、50,一共有三种购货方案;
    利润,
    ∵,w随a增大而减小,
    当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【点睛】
    本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.
    24、小亮说的对,CE为2.6m.
    【解析】
    先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
    【详解】
    解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
    ∵tan∠BAD=,
    ∴BD=10×tan18°,
    ∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
    在△ABD中,∠CDE=90°﹣∠BAD=72°,
    ∵CE⊥ED,
    ∴sin∠CDE=,
    ∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
    ∵2.6m<2.7m,且CE⊥AE,
    ∴小亮说的对.
    答:小亮说的对,CE为2.6m.
    【点睛】
    本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.

    相关试卷

    广东省江门市恩平市达标名校2021-2022学年中考数学押题卷含解析:

    这是一份广东省江门市恩平市达标名校2021-2022学年中考数学押题卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是,下列命题中真命题是等内容,欢迎下载使用。

    广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。

    广东省江门市第二中学2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份广东省江门市第二中学2021-2022学年中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了计算6m3÷的结果是,已知函数的图象与x轴有交点等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map