2021-2022学年安徽省阜阳市颍泉区中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列实数中,无理数是( )
A.3.14 B.1.01001 C. D.
2.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
3.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是( )
A.2- B. C.2- D.
4.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
5.方程的解为( )
A.x=﹣1 B.x=1 C.x=2 D.x=3
6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A.1,2 B.1,3
C.4,2 D.4,3
7.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A. B. C. D.
8.一、单选题
在反比例函数的图象中,阴影部分的面积不等于4的是( )
A. B. C. D.
9.如图,在中,点D为AC边上一点,则CD的长为( )
A.1 B. C.2 D.
10.下列运算正确的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:4x2﹣36=___________.
12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.
13.计算a10÷a5=_______.
14.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.
15.一个正多边形的一个外角为30°,则它的内角和为_____.
16.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
17.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.
三、解答题(共7小题,满分69分)
18.(10分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
求证:是⊙的切线;若,且,求⊙的半径与线段的长.
19.(5分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
20.(8分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
(2)化简:÷(1﹣)
21.(10分)先化简,再求值:,其中,.
22.(10分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
23.(12分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度
非常喜欢
喜欢
一般
不知道
频数
90
b
30
10
频率
a
0.35
0.20
请你根据统计图、表,提供的信息解答下列问题:
(1)该校这次随即抽取了 名学生参加问卷调查:
(2)确定统计表中a、b的值:a= ,b= ;
(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
24.(14分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
先把能化简的数化简,然后根据无理数的定义逐一判断即可得.
【详解】
A、3.14是有理数;
B、1.01001是有理数;
C、是无理数;
D、是分数,为有理数;
故选C.
【点睛】
本题主要考查无理数的定义,属于简单题.
2、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【解析】
利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案.
【详解】
∵矩形ABCD的边AB=1,BE平分∠ABC,
∴∠ABE=∠EBF=45°,AD∥BC,
∴∠AEB=∠CBE=45°,
∴AB=AE=1,BE= ,
∵点E是AD的中点,
∴AE=ED=1,
∴图中阴影部分的面积=S −S −S =1×2− ×1×1−
故选B.
【点睛】
此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式
4、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
5、B
【解析】
观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
方程的两边同乘(x−3)(x+1),得
(x−2) (x+1)=x(x−3),
,
解得x=1.
检验:把x=1代入(x−3)(x+1)=-4≠0.
∴原方程的解为:x=1.
故选B.
【点睛】
本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.
6、A
【解析】
试题分析:通过猜想得出数据,再代入看看是否符合即可.
解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
30+4×3=42,
故选A.
点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
7、B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
故选B.
考点:概率.
8、B
【解析】
根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.
【详解】
解:A、图形面积为|k|=1;
B、阴影是梯形,面积为6;
C、D面积均为两个三角形面积之和,为2×(|k|)=1.
故选B.
【点睛】
主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
9、C
【解析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
【详解】
∵∠DBC=∠A,∠C=∠C,
∴△BCD∽△ACB,
∴
∴
∴CD=2.
故选:C.
【点睛】
主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
10、D
【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
【详解】
解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.
【点睛】
本题考查了整式的乘法,解题的关键是掌握有关计算法则.
二、填空题(共7小题,每小题3分,满分21分)
11、4(x+3)(x﹣3)
【解析】
分析:首先提取公因式4,然后再利用平方差公式进行因式分解.
详解:原式=.
点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.
12、2.1
【解析】
根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得:BD=AC==10(cm),
∴DO=1cm,
∵点E、F分别是AO、AD的中点,
∴EF=OD=2.1cm,
故答案为2.1.
【点评】
本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.
13、a1.
【解析】
试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
原式=a10-1=a1,
故答案为a1.
考点:同底数幂的除法.
14、1
【解析】
连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.
【详解】
连接AD,
∵PQ∥AB,
∴∠ADQ=∠DAB,
∵点D在∠BAC的平分线上,
∴∠DAQ=∠DAB,
∴∠ADQ=∠DAQ,
∴AQ=DQ,
在Rt△ABC中,∵AB=5,BC=3,
∴AC=4,
∵PQ∥AB,
∴△CPQ∽△CBA,
∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,
在Rt△CPQ中,PQ=5x,
∵PD=PC=3x,
∴DQ=1x,
∵AQ=4-4x,
∴4-4x=1x,解得x=,
∴CP=3x=1;
故答案为:1.
【点睛】
本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
15、1800°
【解析】
试题分析:这个正多边形的边数为=12,
所以这个正多边形的内角和为(12﹣2)×180°=1800°.
故答案为1800°.
考点:多边形内角与外角.
16、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
17、(-2,7).
【解析】
解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,
∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC,
∴∠OAB+∠DAF=90°,
∴∠ABO=∠DAF,
∴△AOB∽△DFA,
∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(﹣3,0),B(0,6),
∴AB:AD=3:2,OA=3,OB=6,
∴DF=2,AF=4,
∴OF=OA+AF=7,
∴点D的坐标为:(﹣7,2),
∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).
设直线BC的解析式为:y=kx+b,
则解得:
∴直线BC的解析式为:y=﹣x+6②,
联立①②得: 或(舍去),
∴点E的坐标为:(﹣2,7).
故答案为(﹣2,7).
三、解答题(共7小题,满分69分)
18、(1)证明参见解析;(2)半径长为,=.
【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
【详解】
解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.
【点睛】
1.圆的切线的判定;2.锐角三角函数的应用.
19、(1)证明见解析;(2)
【解析】
试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=BE,OC∥BE,∴BE=2OC=3.
∵BE∥OP,∴△DBE∽△DPO,
∴,即,解得BD=.
20、(1)5(2)
【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
【详解】
解:(1)原式=4﹣2+2+2+1﹣4×
=7﹣2
=5;
(2)原式=÷
=•
=.
【点睛】
本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
21、9
【解析】
根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
当,时,
原式
【点睛】
本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
22、见解析
【解析】
试题分析:(1), ,可得∽ ,从而得,
再根据∠BDF=∠CDA 即可证;
(2)由∽ ,可得,从而可得,再由∽,可得从而得,继而可得 ,得到.
试题解析:(1)∵,∴,
∵ ,∴∽ ,
∴,
又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF,
即∠BDF=∠CDA ,
∴∽;
(2)∵∽ ,∴,
∵ ,∴,
∵∽,∴,∴,
∴ , ∴.
【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.
23、(1)200,;(2)a=0.45,b=70;(3)900名.
【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
【详解】
解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
(2)“非常喜欢”频数90,a= ;
(3).
故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
【点睛】
此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
24、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
【详解】
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
安徽省天长市2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份安徽省天长市2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算3–,﹣2018的相反数是等内容,欢迎下载使用。
安徽省和县联考2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份安徽省和县联考2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了若分式的值为零,则x的值是,方程x2+2x﹣3=0的解是,若点A,若△÷,则“△”可能是,下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。
安徽省阜阳市颍泉区2021-2022学年中考数学五模试卷含解析: 这是一份安徽省阜阳市颍泉区2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了已知,如图,两个反比例函数y1=等内容,欢迎下载使用。