2021-2022学年【全国百强校首发】四川省阆中学中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A. B. C. D.12
3.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
4.计算的结果为( )
A.2 B.1 C.0 D.﹣1
5.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为( )
A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)
6.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是
A. B. C. D.
7.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
成绩(分)
30
29
28
26
18
人数(人)
32
4
2
1
1
A.该班共有40名学生
B.该班学生这次考试成绩的平均数为29.4分
C.该班学生这次考试成绩的众数为30分
D.该班学生这次考试成绩的中位数为28分
8.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
9.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
10.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
12.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.
13.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)
14.﹣|﹣1|=______.
15.计算×3结果等于_____.
16.因式分解:3a2-6a+3=________.
三、解答题(共8题,共72分)
17.(8分)解分式方程:=1
18.(8分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
19.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
20.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
21.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.
22.(10分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
(1)求抛物线的函数关系式;
(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.
23.(12分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
24.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
2、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
3、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
4、B
【解析】
按照分式运算规则运算即可,注意结果的化简.
【详解】
解:原式=,故选择B.
【点睛】
本题考查了分式的运算规则.
5、A
【解析】
分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).
详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),
∴点O是AC的中点,
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∴BD经过点O,
∵B的坐标为(﹣2,﹣2),
∴D的坐标为(2,2),
故选A.
点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
6、A
【解析】
分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
详解:∵四边形ABCD是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=65°
故选A.
点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
7、D
【解析】
A.∵32+4+2+1+1=40(人),故A正确;
B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
C. ∵成绩是30分的人有32人,最多,故C 正确;
D. 该班学生这次考试成绩的中位数为30分,故D错误;
8、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
9、D
【解析】
试题解析:∵四边形ABCD为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D.
10、A
【解析】
根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
【详解】
解:∵一次函数y=kx+b的图象可知k>1,b<1,
∴-b>1,
∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,
故选:A.
【点睛】
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3
【解析】
试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.
考点:3.二次函数的应用;3.销售问题.
12、
【解析】
设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.
【详解】
∵△BCD∽△BAC,
∴=,
设AB=x,
∴22=x,
∵x>0,
∴x=4,
∴AC=AD=4-1=3,
∵△BCD∽△BAC,
∴==,
∴CD=.
故答案为
【点睛】
本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.
13、2a+12b
【解析】
如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,
因为∠ABC<20°,所以,
翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
14、2
【解析】
原式利用立方根定义,以及绝对值的代数意义计算即可求出值.
【详解】
解:原式=3﹣1=2,
故答案为:2
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
15、1
【解析】
根据二次根式的乘法法则进行计算即可.
【详解】
故答案为:1.
【点睛】
考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.
16、3(a-1)2
【解析】
先提公因式,再套用完全平方公式.
【详解】
解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
【点睛】
考点:提公因式法与公式法的综合运用.
三、解答题(共8题,共72分)
17、x=1
【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
化为整式方程得:2﹣3x=x﹣2,
解得:x=1,
经检验x=1是原方程的解,
所以原方程的解是x=1.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为
整式方程求解.解分式方程一定注意要验根.
18、50千米/小时.
【解析】
根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
【详解】
解:设货车的速度为x千米/小时,依题意得:
解:根据题意,得
.
解得:x=50
经检验x=50是原方程的解.
答:货车的速度为50千米/小时.
【点睛】
本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
19、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
20、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
21、(1)抽样调查;12;3;(2)60;(3).
【解析】
试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
试题解析:(1)抽样调查,
所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:
(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
(3)画树状图如下:
列表如下:
共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.
22、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).
【解析】
(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;
(2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;
(3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.
【详解】
(1)∵直线y=x+3与x轴、y轴分别交于A、C两点,
∴点A的坐标为(﹣4,0),点C的坐标为(0,3).
∵点B在x轴上,点B的横坐标为,
∴点B的坐标为(,0),
设抛物线的函数关系式为y=ax2+bx+c(a≠0),
将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:
,解得: ,
∴抛物线的函数关系式为y=﹣x2﹣x+3;
(2)如图1,过点P作PE⊥x轴,垂足为点E,
∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,
∴CP=2AP,
∵PE⊥x轴,CO⊥x轴,
∴△APE∽△ACO,
∴,
∴AE=AO=,PE=CO=1,
∴OE=OA﹣AE=,
∴点P的坐标为(﹣,1);
(3)如图2,连接AC交OD于点F,
∵AM⊥OD,CN⊥OD,
∴AF≥AM,CF≥CN,
∴当点M、N、F重合时,AM+CN取最大值,
过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,
∴,
∴设点D的坐标为(﹣3t,4t).
∵点D在抛物线y=﹣x2﹣x+3上,
∴4t=﹣3t2+t+3,
解得:t1=﹣(不合题意,舍去),t2=,
∴点D的坐标为(,),
故当AM+CN的值最大时,点D的坐标为(,).
【点睛】
本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).
23、(1);(2)的值为.
【解析】
(1)利用判别式的意义得到,然后解不等式即可;
(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.
【详解】
解:(1)根据题意得,
解得;
(2)的最大整数为2,
方程变形为,解得,
∵一元二次方程与方程有一个相同的根,
∴当时,,解得;
当时,,解得,
而,
∴的值为.
【点睛】
本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
24、(1)证明见解析;(2)
【解析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【详解】
(1)证明:连接OC,AC.
∵CF⊥AB,CE⊥AD,且CE=CF.
∴∠CAE=∠CAB.
∵OC=OA,
∴∠CAB=∠OCA.
∴∠CAE=∠OCA.
∴OC∥AE.
∴∠OCE+∠AEC=180°,
∵∠AEC=90°,
∴∠OCE=90°即OC⊥CE,
∵OC是⊙O的半径,点C为半径外端,
∴CE是⊙O的切线.
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四边形AOCD是平行四边形,
∴OC=AD=a,AB=2a,
∵∠CAE=∠CAB,
∴CD=CB=a,
∴CB=OC=OB,
∴△OCB是等边三角形,
在Rt△CFB中,CF= ,
∴S四边形ABCD= (DC+AB)•CF=
【点睛】
本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析: 这是一份2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析,共17页。试卷主要包含了已知下列命题,单项式2a3b的次数是等内容,欢迎下载使用。
2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析: 这是一份2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的绝对值是等内容,欢迎下载使用。
【全国百强校首发】四川省阆中学中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份【全国百强校首发】四川省阆中学中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列分式是最简分式的是等内容,欢迎下载使用。